Revery: from Proof-of-Concept to Exploitable (One Step towards Automatic Exploit Generation)

ACM CCS 2018, download

Yan Wang , Chao Zhang , Xiaobo Xiang , Zixuan Zhao , Wenjie Li , Xiaorui Gong , Bingchang Liu , Kaixiang Chen , Wei Zou .


Automatic exploit generation is an open challenge. Existing solutions usually explore in depth the crashing paths, i.e., paths taken by proof-of-concept (PoC) inputs triggering vulnerabilities, and generate exploits when exploitable states are found along the paths. However, exploitable states do not always exist in crashing paths. Moreover, existing solutions heavily rely on symbolic execution and are not scalable in path exploration and exploit generation. In addition, few solutions could exploit heap-based vulnerabilities.

In this paper, we propose a new solution Revery to search for exploitable states in paths diverging from crashing paths, and generate control-flow hijacking exploits for heap-based vulnerabilities. It adopts three novel techniques: (1) a layout-contributor digraph to characterize a vulnerability’s memory layout and its contributor instructions; (2) a layout-oriented fuzzing solution to explore diverging paths, which have similar memory layouts as the crashing paths, in order to search more exploitable states and generate correspond- ing diverging inputs; (3) a control-flow stitching solution to stitch crashing paths and diverging paths together, and synthesize EXP inputs able to trigger both vulnerabilities and exploitable states.

We have developed a prototype of Revery based on the binary analysis engine angr [31], and evaluated it on a set of 19 real world CTF (capture the flag) programs. Experiment results showed that it could generate exploits for 9 (47%) of them, and generate EXP inputs able to trigger exploitable states for another 5 (26%) of them.