
软件漏洞挖掘方法探索
Finding Vulnerabilities with Fuzzing

Chao Zhang

Tsinghua University

http://netsec.ccert.edu.cn/chaoz/

http://netsec.ccert.edu.cn/chaoz/

About Me

2004-2008-2013 è 2013-2016 è 2016-present

pHack for fun software and system security
p Automated vuln. discovery: Tencent CSS TSec 2nd Place, 300+ CVE

p Automated exploit mitigation: Microsoft BlueHat Prize (Special Recognition Award)

p Automated exploit generation: Tencent CSS TSec Breakthrough Prize (1st place)

p Automated attack & defense: DARPA CGC (1st in defense 2015, 2nd in offense 2016)

p Manual hacking: DEFCON CTF (2nd in 2016, 5th in 2015 and 2017)

p Goal: AlphaGo for software security.

2020/8/22 2To better defend yourself, know your enemy first. --- Sun Tzu

Research Interests

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 3

p段海新教授，张超副教授，李琦副教授，诸葛建伟副研究员等

p学术研究
p 研究方向：网络、系统、应用安全（AI、物联网、区块链）

p 学术成果：国际四大安全会议论文数量名列前茅

p 实践应用：促进Google、微软、IETF等多次改进产品、协议标准安全性

p组织发起
p InForSec网络安全研究国际学术论坛

p XCTF国际网络安全技术对抗联赛
p “蓝莲花”“紫荆花”战队

网络空间安全实验室

4

http://netsec.ccert.edu.cn/

http://netsec.ccert.edu.cn/

没有什么能够阻挡

没有什么能够阻挡
你对自由的向往

…
…
如此的清澈高远

盛开着永不凋零
蓝莲花

紫荆花蓝莲花

欢迎热爱安全研究的同学们加入蓝莲花！（不限学校）

6

pValuable assets, root causes of most security incidents

Vulnerability: Ghost in Cyberspace

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Hacking Practice: DEFCON CTF

Blue-Lotus (coach)

• 2013 first time in DEFCON；
• 2014 5

th
place；

• 2015 5

th
place ；

• 2016 2

nd
place；(human vs. machine)

• 2017 5

th
place ;

• 2018 6

th
place

• 2019 3rd place

Global

• 2013：ppp, men in black hats, raon_ASRT

• 2014：ppp, hitcon, dragonsector, blue-lotus

• 2015：defkor, ppp, 0daysober, hitcon, blue-lotus

• 2016：ppp, b1o0p, defkor, hitcon

• 2017：ppp, hitcon, a*0*e, defkor, tea-deliverers

• 2018：defkoroot, ppp, hitcon, a*0*e, sauercloud, tea-deliverers

• 2019: ppp, hitcon, tea-deliverers

7

DARPA Cyber Grand Challenge
（Automated Offense and Defense）

（CodeJitsu Team Captain, CQE Defense #1，CFE Offense #2）

Vulnerability Discovery

p Code Review (10%?)

p Static Analysis

p Dynamic Analysis

p Taint Analysis

p Symbolic Execution

p Model Checking

p Fuzzing (80%?)

92020/8/22 http://netsec.ccert.edu.cn/chaoz/

monitor

Fuzzing

pGoal:

pFinding PoC samples that prove vulnerabilities

pSolution: testing

p Find needle in the haystack
10

inputs
Generator/

Mutator target
program

Security
violation?

bugs

how?

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

A better strategy: Genetic Algorithm

p Iterative testing, keep GOOD seeds, report bugs

2020/8/22 11

Seed
Pool

Select
Seed

Mutate
Seed

Test

Report
Crashes

Filter
Seeds

seed

Potential
Vulnerabilities

Track
Security
Tracking

Target
Application

seedseedTestcases

Initial
Inputs

http://netsec.ccert.edu.cn/chaoz/

A better strategy: Genetic Algorithm

p GOOD: coverage increases

p Bugs: sanitizers
2020/8/22 12

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Security
Sanitizers

Potential
Vulnerabilities

Track

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

http://netsec.ccert.edu.cn/chaoz/

A pioneer tool: AFL

• Evolving: filter out only GOOD samples contributing to code coverage

• Scalable: mutation-based, few knowledge required

• Fast: fork-server, persistent, parallel

• Sensitive: support different sanitizers to catch security violations
13

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Our works

2020/8/22 14

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

CollAFL (Oakland18)FANS (Sec20)

MOpt (Sec19)

HOTracer (Sec17)

GreyOne (Sec20)

Vul Dist (ICSE20)http://netsec.ccert.edu.cn/chaoz/

Improvement 1: Coverage & Seed Selection

2020/8/22 15http://netsec.ccert.edu.cn/chaoz/

2020/8/22 16

IEEE S&P 2018

http://netsec.ccert.edu.cn/chaoz/

p AFL uses a 64KB bitmap to track edge coverage

p Two edges may have a same hash
p Discarding GOOD seeds

p Discarding unique crashes

p Providing inaccurate coverage info for fuzzing policies

(e.g., seed selection)

Observations (1)

p Collision in Coverage Tracking
p “The size of the map is chosen so that collisions are sporadic with almost all of the intended targets,

which usually sport between 2k and 10k …” -- from AFL’s description

17

; key: prev

Code in BB1

; key: cur

hash = cur⊕(prev≫1)

bitmap[hash]++

Code in BB2

Observations (2)

p Few seed selection policies aim at increasing the code coverage directly
qE.g., AFLfast, VUzzer, AFLgo, QTEP, SlowFuzz

p Coverage-first seed selection policies could reach higher code coverage faster.

2020/8/22 18http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

Our Solution: CollAFL

p Mitigate collision in coverage tracking

p Apply coverage-first seed selection policy

2020/8/22 19http://netsec.ccert.edu.cn/chaoz/

RQ1: Eliminate hash collisions

pAFL uses a 64KB bitmap to track edge coverage

2020/8/22 20

; key: prev
Code in BB1

; key: cur
hash = cur⊕(prev≫1)
bitmap[hash]++
Code in BB2

http://netsec.ccert.edu.cn/chaoz/

21

Naïve solution: increase bitmap size

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

2020/8/22 22

Our solution: intuition

pReplace the hash algorithm, without much performance loss

pEach block could have different combination of parameters x,y,z

pSearch parameters x,y,z for all blocks one by one, to avoid collisions.
pharder and harder to find parameters for remaining blocks.

; key: prev

code

; key: cur

; paras: x, y, z

bitmap[hash]++

code

hash = cur⊕(prev≫1)

hash = (cur≫x)⊕(prev≫y) +z

http://netsec.ccert.edu.cn/chaoz/

2020/8/22 25

Our solution: in-a-nutshell

pSearch parameters x,y,z for multi-precedent blocks

pConstruct hash table for unsolvable multi-precedent blocks

pAssign un-used hashes to single-precedent blocks

http://netsec.ccert.edu.cn/chaoz/

26

Performance of Collision Mitigation

Most BBs have only one precedent, saving hash computation and improving runtime performance.

The bitmap will be enlarged when the edge count is larger than bitmap size, otherwise collision is inevitable.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

RQ2: Coverage-first seed selection

pPrioritize seeds with more untouched branches

pMutations on these seeds are more likely to exercise those untouched
branches, contributing to coverage.

2020/8/22 27

code

code

code

code

Path explored

by a seed

untouched

untouched

touched

http://netsec.ccert.edu.cn/chaoz/

Evaluation: Code Coverage

p20% more paths over AFL

2020/8/22 28

With collision mitigation only

With extra untouched-branch seed selection policy

http://netsec.ccert.edu.cn/chaoz/

Evaluation: Crashes

p320% more unique crashes than AFL (CollAFL-br)

2020/8/22 29

average

http://netsec.ccert.edu.cn/chaoz/

Evaluation: Vulnerabilities

p134 new bugs, 23 collided bugs, 95 CVE, 9 ACE

2020/8/22 30http://netsec.ccert.edu.cn/chaoz/

Improvement 2: Seed Mutation & Tracking

2020/8/22 31http://netsec.ccert.edu.cn/chaoz/

2020/8/22 32

USENIX Security 2020

http://netsec.ccert.edu.cn/chaoz/

Data flow information is useful for fuzzing 332020/8/22

pWhere to mutate?
p input[0:8]

pHow to mutate?
p MAGICHDR

p Seed prioritization

p 1 byte match, vs.
p 7 bytes match

http://netsec.ccert.edu.cn/chaoz/

What types of data-flow features?

pTaint attributes
pDependency between inputs and variables

pBranch value conformance

pDistance between branch condition operands

pThe higher conformance, the closer distance

2020/8/22 34http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

data flow
Tracking

Taint
Ana.

Filtering
Policies

Testing
Env

Seed
Generation

Our Solution: GreyOne

p Data flow tracking

p Guided seed mutation

p Data sensitive evolving2020/8/22 35

2020/8/22 36

RQ1: How to efficiently get data-flow features?
* taint attributes
* branch value conformance

RQ2: How to utilize data-flow features to guide mutation?

RQ3: How to utilize data-flow features to tune fuzzing direction?

http://netsec.ccert.edu.cn/chaoz/

RQ1-1: Taint Attributes

pTraditional dynamic taint analysis
pLibdft/DFSan…

pPropagate taint inst. by inst.

pTaint rules manually/automatically

pUnder-taint and over-taint issues

pFuzzing-driven Taint Inference (FTI)
p Interference rule

pTaint inference
qByte-level mutation

qBranch variable monitoring

qDeterministic fuzzing stage

pComparison
pSpeed: faster

pManual efforts: none, arch-independent
p No over-taint

p less under-taint
2020/8/22 37http://netsec.ccert.edu.cn/chaoz/

2020/8/22 38

Performance of FTI

Average speed of analyzing one seed by FTI
ü FTI brings 25% overhead on average

Proportion of tainted untouched branches reported
ü FTI outperforms the classic taint analysis solution DFSan

ü FTI finds 1.3X more untouched branches that are tainted

http://netsec.ccert.edu.cn/chaoz/

RQ1-2: Constraint Conformance

2020/8/22 39

Conformance of constraints
ü Expressing the distance of tainted variables to values

expected in untouched branches

ü Higher conformance means lower complexity of mutation

Features
ü Low instrumentation overhead

ü Keep the original construct of program

ü Able to evaluate conformance for comparisons between

non-constant variables

Q1: How to evaluate single constraint?
Q2: How to evaluate a set of constraints?

Conformance of one branch

Conformance of a basic block

Conformance of one path

http://netsec.ccert.edu.cn/chaoz/

2020/8/22 40

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

data flow
Tracking

Taint
Ana.

Filtering
Policies

Testing
Env

Seed
Generation

Where and how to mutate?
http://netsec.ccert.edu.cn/chaoz/

RQ2: taint-guided mutation (how)

2020/8/22 41

How to mutate direct copies of input?
ü Direct copies

u Magic number, Checksum…
ü Execute twice

u First round
u FTI taint analysis: input offsets, expected value

u Second round
u Mutate and test

How to mutate indirect copies of input?
ü Random bit flipping and arithmetic operations on each dependent byte
ü Multiple dependent bytes could be mutated together

Mitigate the under-taint issue
ü Randomly mutate their adjacent bytes with a small probability

http://netsec.ccert.edu.cn/chaoz/

RQ2: taint-guided mutation (where)

2020/8/22 42

Where to mutate?
ü Explore the untouched neighbor branches along this path one by one

u In descending order of branch weight

ü For specific untouched neighbor branch
u Mutating its dependent input bytes one by one

u In descending order of byte weight

http://netsec.ccert.edu.cn/chaoz/

RQ2: taint-guided mutation (order)

pInputs may affect program variables, which may influence branches

pPrioritize bytes to mutate: affecting more untouched branches

pPrioritize branches to explore: depending on more high-weight bytes

2020/8/22 43http://netsec.ccert.edu.cn/chaoz/

2020/8/22 44

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

data flow
Tracking

Taint
Ana.

Filtering
Policies

Testing
Env

Seed
Generation

Tune evolution direction with Branch Conformance
http://netsec.ccert.edu.cn/chaoz/

RQ3: Conformance-guided evolution

pUpdating seed queues:
p the higher conformance, the better

p together with AFL’s policy: coverage-guided

2020/8/22 45

• New coverage

• Same coverage, higher path conformance

• Same coverage, same path conformance,

different branch conformance

http://netsec.ccert.edu.cn/chaoz/

Evaluation: Code Coverage

Number of unique crashes (average and maximum count in 5
runs) found in real world programs by various fuzzers

2020/8/22 47

The growth trend of number of unique paths
(average in 5 runs) detected by AFL, CollAFL-br,
Angora and GREYONEhttp://netsec.ccert.edu.cn/chaoz/

Unique Crashes Evaluation

Number of unique crashes (average and
maximum count in 5 runs) found in real
world programs by various fuzzers

2020/8/22 48

The growth trend of number of unique
crashes (average and each of 5 runs)
detected by AFL, CollAFL-br, Angora
and GREYONE

http://netsec.ccert.edu.cn/chaoz/

2020/8/22 49

Number of vulnerabilities (accumulated in 5 runs) detected by 6 fuzzers,
including AFL, CollAFL-br, VUzzer, Honggfuzz,Angora, and GREYONE,
after testing each application for 60 hours

Evaluation: Vulnerabilities

19 popular applications

2X more vulnerabilities
(41 CVEs)

http://netsec.ccert.edu.cn/chaoz/

CVEs

2020/8/22 50

libwpd CVE-2017-14226, CVE-2018-19208
libtiff CVE-2018-19210
libbson CVE-2017-14227,
libncurses CVE-2018-19217, CVE-2018-19211
libsass CVE-2018-19218, CVE-2018-19218
libsndfile CVE-2018-19758

nasm
CVE-2018-19213, CVE-2018-19215, CVE-
2018-19216, CVE-2018-20535, CVE-2018-
20538, CVE-2018-19755

libwebm CVE-2018-19212
libconfuse CVE-2018-19760

libsixel
CVE-2018-19757, CVE-2018-19756, CVE-
2018-19762, CVE-2018-19761, CVE-2018-
19763, CVE-2018-19763

libsolv CVE-2018-20533, CVE-2018-20534, CVE-
2018-20532

libLAS CVE-2018-20539, CVE-2018-20536, CVE-
2018-20537, CVE-2018-20540

libxsmm CVE-2018-20541, CVE-2018-20542, CVE-
2018-20543

libcaca
CVE-2018-20545, CVE-2018-20546, CVE-
2018-20547, CVE-2018-20548, CVE-2018-
20544, CVE-2018-20544

Libxsmm: CVE-2018-20541

Libsixel:CVE-2018-19757

http://netsec.ccert.edu.cn/chaoz/

Improvement 3: Seed Mutation Scheduling

2020/8/22 51http://netsec.ccert.edu.cn/chaoz/

2020/8/22 52

USENIX Security 2019

http://netsec.ccert.edu.cn/chaoz/

How to improve (mutation-based) fuzzing?

What About
Improving Mutation

Scheduling?

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 53

Mutation operators of AFL

pMutation operators characterize where and how to mutate the seed.

Some of the mutation operators in AFL.

The mutation operator
bitflip 2/1 represents

flipping 2 consecutive bits,
where the stepover is 1 bit

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 54

Mutation scheduling of AFL

pThree mutation stages:

pDeterministic, havoc, and splicing

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 55

Mutation scheduling scheme of AFL

pThree mutation stages:

pDeterministic, havoc, and splicing

Is the mutation efficiency of each
operator the same in fuzzing
process?

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 56

Mutation efficiency study on AFL

Percentages of interesting test cases produced by different operators in the deterministic stage of AFL

Different mutation operators’
efficiencies are different.

For these programs, the mutation
operators bitflip 1/1, bitflip 2/1
and arith 8/8 could yield more
interesting test cases than other
mutation operators.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 57

How does AFL select these mutation operators?

The times that mutation operators are selected when AFL fuzzes the target program avconv.

The two efficient
operators are selected
for a small number of
times.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 58

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

Our Solution: MOPT

p Schedule seed mutation operators in a smarter way

2020/8/22 59http://netsec.ccert.edu.cn/chaoz/

Intuition

p Idea: select the “best” mutation operator based on

p each operator’s historic performance

p Solution: Particle Swarm Optimization

2020/8/22 60http://netsec.ccert.edu.cn/chaoz/

Particle Swarm Optimization

pFor each iteration, the movement of a particle p is updated as follows:

p!#$% p is the velocity of a particle p.
p1#$% p is the position of a particle p.
p3&'() 4 is the local best position of a particle p.
p6&'() is the global best position.
p8 is the inertia weight.
p9 : (0,1) is a random displacement weight

!#$% p ← 8 × !#$% p
+ 9 × 3&'() 4 − D#$% 4
+ 9 × 6&'() − D#$% 4

1#$% p ← 1#$% p + !#$% p

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 61

The customized PSO algorithm of MOPT

• For each iteration, the movement of a particle !# (mutation operator)
in a swarm "$ (a set of mutation operators), its position #%&'["$] [!#](the probability that it will be selected) is updated by these formula:

!!"# "$ #% ← % × !!"# "$ #%
+(×)&'() "$ #% − +!"# "$ #%
+(× ,&'()[#%] − +!"#["$] [#%]

/!"#["$] [#%] ← /!"#["$] [#%] + !!"#["$] [#%]

• % is the inertia weight.
• (2 (0,1) is a random displacement weigh

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 62

MOPT main framework

PSO Initialization Module

Pilot Fuzzing Module

Core Fuzzing Module

PSO Updating Module

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 63

Source:
https://github.com/vul337/MOpt-AFL

https://github.com/vul337/MOpt-AFL

MOPT main framework

PSO Initialization Module

initializes parameters for the

customized PSO algorithm.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 64

MOPT main framework

Pilot Fuzzing Module employs

the distributions from multiple

swarms to perform fuzzing and

records the measurements for

updating.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 65

MOPT main framework

Core Fuzzing Module employs

the best swarm evaluated by

Pilot Fuzzing Module to perform

fuzzing and records the

measurements.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 66

MOPT main framework

PSO Updating Module updates

the distribution of each swarm

with the measurements from

Pilot Fuzzing and Core Fuzzing

Modules.

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 67

Both MOPT-AFL-tmp and –ever found more unique crashes and paths than AFL.

Evaluation: unique crashes and paths

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 68

Both MOPT-AFL-tmp and –ever found much more vulnerabilities than AFL.

Vulnerabilities discovered by AFL, MOPT-AFL-tmp, MOPT-AFL-ever

33 88 85

Evaluation: Vulnerability discovery

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 69

Both MOPT-AFL-tmp and –ever found more CVEs with a variety of

types than AFL.

CVE discovery

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 70

Improvement 4: Seed Generation

2020/8/22 71http://netsec.ccert.edu.cn/chaoz/

2020/8/22 72

USENIX Security 2020

http://netsec.ccert.edu.cn/chaoz/

Android Application-Service Communication

p Android native system services provide fundamental functionalities, thus attractive to attackers

p A specific binder IPC mechanism is implemented to support native services

p Locate service interface (IBinder obj), launch transactions (transact method) with serialized data

732020/8/22 http://netsec.ccert.edu.cn/chaoz/

Fuzzing Android Native Services

p Locate service interface (IBinder proxy obj)

p some interfaces are deeply nested (not registered in Service Manager)

p launch transactions (transact method), with

p many transactions are available, and
p some are inter-dependent

p serialized data

p data type

p data dependency

p Simple random fuzzing is inefficient.

2020/8/22 74

Client:

IBinder::transact(code,data,reply,flags)

Service:

Binder::onTransact(code, data, reply, flags)

I
P
C

http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

Our Solution: FANS

p Recognize testcase format

p Generate valid testcases

2020/8/22 75http://netsec.ccert.edu.cn/chaoz/

Challenges

❏C1. Multi-Level Interface Recognition
❏Collect all Interfaces
❏Identify multi-level interfaces

❏C2. Interface Model Extraction
❏Collect all of the possible transactions
❏Extract the input and output variables in the transactions

❏C3. Semantically-correct Input Generation
❏Variable name and variable type
❏Variable dependency
❏Interface dependency

762020/8/22 http://netsec.ccert.edu.cn/chaoz/

77

Overview

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

78

Interface Collector

• Compile source code (including AIDL files)

• Recognize candidate service interfaces (with onTransact dispatcher)

Binder::onTransact(code, data, reply, flags)

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

79

Interface Model Extractor

• Transactions supported by the interface: switch conditions in onTransact

• I/O variables (data) used in the interface: readInt32, writeInt32 (name, type, size)

• Other information: aggerated type definition (e.g., structure)

Binder::onTransact(code, data, reply, flags)

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

80

Dependency Analysis

• Interface dependency: writeStrongBinder and readStrongBinder

• intra-transaction value dependency (conditional statement)

• inter-transaction value dependency (input/output variables with matching type and name)2020/8/22 http://netsec.ccert.edu.cn/chaoz/

81

Fuzzer

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Q1 - Interface Statistics

❏43 top-level interfaces

❏25 multi-level interfaces

❏Most interfaces are written manually

822020/8/22 http://netsec.ccert.edu.cn/chaoz/

Q1 - Interface Dependency

❏Interface generation
❏e.g., IMemory

❏Deepest interface
❏IMemoryHeap (five-level)

❏Customized interface
❏e.g., IEffectClient

832020/8/22 http://netsec.ccert.edu.cn/chaoz/

Q2 - Extracted Interface Model Statistics

❏Transaction
❏530 transactions in top-level interfaces
❏281 transactions in multi-level interfaces

❏Variable
❏Most variables are under constraint(s)

842020/8/22 http://netsec.ccert.edu.cn/chaoz/

Q3 - Vulnerability Discovery

❏We intermittently ran FANS for around 30 days

❏FANS triggered thousands of crashes
❏30 vulnerabilities in native programs

❏Google has confirmed 20 vulnerabilities

❏138 Java exceptions
❏Comparison with BinderCracker

❏BinderCracker found 89 vulnerabilities on Android 5.1 and Android 6.0
❏FANS discovered 168 vulnerabilities on android-9.0.0_r46

86

Source: https://github.com/vul337/fans
2020/8/22 http://netsec.ccert.edu.cn/chaoz/

https://github.com/vul337/fans

Recap

2020/8/22 87

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

CollAFL (Oakland18)FANS (Sec20)

MOpt (Sec19)

HOTracer (Sec17)

GreyOne (Sec20)

Vul Dist (ICSE20)http://netsec.ccert.edu.cn/chaoz/

Improvements to Fuzzing

2020/8/22 88http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

89

Seed Generation

How to get/generate seeds?

Skyfire (Oakland17): learn a probabilistic CFG grammar

Learn&Fuzz (ASE17): learn a RNN model of valid inputs

GAN (2017/11) learn a GAN to generate legitimate seeds

Neuzz (Oakland19): learn a NN to model inputàcoverage2020/8/22 http://netsec.ccert.edu.cn/chaoz/

90

Seed Generation (2)

How to get/generate seeds?

Driller (NDSS16): hybrid fuzzing (symbex)

QSYM (CC18) efficient symbex or binary

Intriguer (CCS19) field-level symbex

Matryoshka (CCS19) symbex for nested branches
2020/8/22

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

DigFuzz (NDSS19) schedule hybrid fuzzing

HFL (NDSS20) hybrid fuzzing for kernel

SAVIOR (Oakland20) symbex

http://netsec.ccert.edu.cn/chaoz/

91

Seed Generation (3)

How to get/generate seeds?

DIFUZE (CCS17): static analysis, input format of ioctrl()

FANS (USENIX Sec20):static analysis, interface of Android

IMF (CCS17): dynamic analysis, dependency of macOS

Moonshine (Sec18): static analysis, dependency of Linux

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

NAUTILUS (NDSS19): Context-Free Grammar by users

CodeAlchemist (NDSS19) JavaScript semantics

Grimoire (Sec19) Learn grammar during fuzzing

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Testing Environments

How to test targets?

T-Fuzz (Oakland18): bottleneck in binary

Kelinci (CC17) Java applications

TLS-Attacker (CCS17) TLS

EFuzz (CCS17) smart grid2020/8/22

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

Dachshund (NDSS17): JIT constant opt.

DELTA (NDSS17): SDN applications

IoTFuzzer (NDSS18): IoT devices.

FirmAFL (Sec19): IoT firmware effic.http://netsec.ccert.edu.cn/chaoz/ 92

93

Testing Environments (2)

How to test targets?

LipFuzzer (NDSS19): voice assistant

HyperCube (NDSS20): hypervisor

kAFL (USENIX Sec17): kernel & PT

Charm (USENIX Sec18): mobile device driver2020/8/22

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

PeriScope (NDSS19): driver (hardware).

RVFUZZER (Sec19): Robotic Vehicles

JANUS (Sec19): File System

SQUIRREL (CCS20): Databasehttp://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

94

Seed Selection

How to select seed from the pool?

AFLfast (CCS16), cold paths/seeds

VUzzer (NDSS17), deeper paths

AFLgo(CCS17), closer paths

EcoFuzz(Sec17), closer paths

QTEP(FSE17), more vul candidates

SlowFuzz (CCS17) more comp. resources

FairFuzz (ASE18) rare branches

CollAFL (Oakland18) more unvisited children2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

95

Seed Mutation

How to generate/mutate new testcases?

LSTM (Microsoft, 2017/11) predicate which bytes to mutate first

Reinforcement Learning (2018/1) predicate which mutation op. is better

Mopt (USENIX Sec 2019) select the best mutation algorithm using Particle Swarm Optimization

ILF (CCS19) learn an AI model from symbex to produce fuzzing policy
2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

96

Seed Mutation (2)

How to generate/mutate new testcases?

VUzzer (NDSS17) taint analysis: which bytes/how to mutate

REDQUEEN (NDSS19) identify direct copy of inputs

Angora(Oakland18) gradient descent

ProFuzzer (Oakland19) recognize input shape by monitoring input-cov casuality

GreyOne (USENIX SEC20) lightweight taint analysis, branch conformance

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

97

Efficient Testing

How to efficiently test target application?

perf-fuzz (CCS17) enable efficient parallel fuzzing

PAFL (FSE18) each fuzzer node focuses on partial code (bitmap)

Untracer (Oakland19) remove cov tracking after a while

EnFuzz (USENIX SEC19) combine multiple strategies with parallel fuzzing

FuzzGuard (USENIX SEC20) remove inputs that cannot reach targets via AI
2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

98

Coverage Metrics

A better/alternative coverage algorithm?

CollAFL (Oakland18) mitigate coverage collision issue

IJON (Oakland20) customize coverage metrics, e.g., position in the maze

AFLgo (CCS17) directed fuzzing targeting specific code

HawkEye (CCS18) refined directed fuzzing
2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Seed
Pool

Select
Seed

Mutate
Seed

Test

coverage

Report
Crashes

Filter
Seeds

seed

Seed
Selection
Policies

Seed
Mutation
Policies

Security
Sanitizers

Potential
Vulnerabilities

Track

Optimizations

Coverage
Tracking

Security
Tracking

Target
Application Instrument

seedseedTestcases

Cov.
Algor.

Initial
Inputs

Filtering
Policies

Testing
Env

Seed
Generation

99

Security Tracking

How to catch security violations during testing?

AddressSanitizer (ATC12): detect spatial and temporal mem violation

Meds (NDSS18) fix minor defects of AddressSanitizer

Razar (S&P19) race condition bugs

2020/8/22 http://netsec.ccert.edu.cn/chaoz/

Conclusions

p Fuzzing is the most popular vulnerability discovery solution.

p Genetic-algorithm-based fuzzers achieve great success, and

p Many improvements have been proposed and deployed in practice

p Including our works

p Many more topics to explore in fuzzing

2020/8/22 101http://netsec.ccert.edu.cn/chaoz/

Join us

p highly motivated students

p undergraduate intern students

p visiting master/phd students

p Research assistants, engineers

p postdocs

p tenure-track faculty

2020/8/22 http://netsec.ccert.edu.cn/chaoz/ 102

http://netsec.ccert.edu.cn/contact/

http://netsec.ccert.edu.cn/contact/

Thanks!

Q&A

