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Abstract—Many mechanisms have been proposed and de-
ployed to prevent exploits against software vulnerabilities. Among
them, WdX is one of the most effective and efficient. WHX
prevents memory pages from being simultaneously writable
and executable, rendering the decades old shellcode injection
technique infeasible.

In this paper, we demonstrate that the traditional shellcode
injection attack can be revived through a code cache injection
technique. Specifically, dynamic code generation, a technique
widely used in just-in-time (JIT) compilation and dynamic binary
translation (DBT), generates and modifies code on the fly in order
to promote performance or security. The dynamically generated
code fragments are stored in a code cache, which is writable
and executable either at the same time or alternately, resulting
in an opportunity for exploitation. This threat is especially
realistic when the generated code is multi-threaded, because
switching between writable and executable leaves a time window
for exploitation. To illustrate this threat, we have crafted a proof-
of-concept exploit against modern browsers that support Web
Workers.

To mitigate this code cache injection threat, we propose a
new dynamic code generation architecture. This new architecture
relocates the dynamic code generator to a separate process,
in which the code cache is writable. In the original process
where the generated code executes, the code cache remains read-
only. The code cache is synchronized across the writing process
and the execution process through shared memory. Interaction
between the code generator and the generated code is handled
transparently through remote procedure calls (RPC). We have
ported the Google V8 JavaScript engine and the Strata DBT
to this new architecture. Our implementation experience showed
that the engineering effort for porting to this new architecture
is minimal. Evaluation of our prototype implementation showed
that this new architecture can defeat the code cache injection
attack with small performance overhead.

I. INTRODUCTION

Exploits against software vulnerabilities remain one of the
most severe threats to cyber security. To mitigate this threat,
many techniques have been proposed, including data execution
prevention (DEP) [4] and address space layout randomization
(ASLR) [42], both of which have been widely deployed and are
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effective. DEP is a subset of the more general security policy
WaX, which enforces that memory should either be writable
but not executable (e.g., data segments), or be executable
but read-only (e.g., code segments). This enforcement can
completely mitigate traditional exploits that inject malicious
shellcode into data segments. Consequently, attackers have to
leverage more complicated exploit techniques, such as return-
to-libc [53] and return-oriented-programming (ROP) [52].
Moreover, WBX memory has become the foundation of many
other protection techniques, such as control flow integrity
(CFD [2, 63, 64].

However, the effectiveness of WX can be undermined
by another important compilation technique — dynamic code
generation (DCG). With the ability to generate and execute
native machine code at runtime, DCG is widely used in just-
in-time (JIT) compilers [7] and dynamic binary translators
(DBT) [28, 48] to improve performance, portability, and secu-
rity. For example, JIT compilers for dynamic languages (e.g.,
JavaScript and ActionScript) can leverage platform information
and runtime execution profile information to generate faster
native code. DBTs can leverage DCG to provide dynamic
analysis capability [28], cross-platform or cross-architecture
portability [9, 47], bug diagnostics [33, 45], and enhanced
security [8, 12, 25, 26, 36].

A fundamental challenge posed by DCG is that the code
cache, in which the dynamically generated code is stored,
needs to be both writable (for code emitting, code patching,
and garbage collection) and executable. This violates the WX
policy and enables a new attack vector. We have observed
a real world exploit that delivers shellcode into the writable
code cache and successfully compromises the Chrome web
browser [43].

Solving this problem seems trivial. A straightforward idea,
which has been adopted in browsers like mobile Safari, is
demonstrated in Figure 1. This technique keeps the code cache
as read-only and executable (RX) when the generated code is
executing; switches to writable but not executable (WR) when
it needs to be modified (¢1); and switches back to RX when
the write operation finishes (£2). As a result, the code cache
will remain read-only when the generated code is executing;
and the attack demonstrated in [43] can be mitigated.

Unfortunately, in addition to performance overhead, this
simple mechanism does not work well with multi-threaded
programs. First, if the code generator uses a shared code cache
for all threads (e.g., PIN [28]), then the code cache cannot be
switched to WR, because other concurrently running threads
require the executable permission. Second, even if the code
generator uses a dedicated code cache for each thread (e.g., JS



engines), the protection is still flawed and is subject to race
condition attacks [34], as shown in Figure 2. More specifically,
memory access permissions are applied to the whole process
and are shared among all threads. When one thread turns on the
writable permission for its code cache (e.g., for code emitting),
the code cache also becomes writable to all other threads. Once
the write permission is set, another concurrently running thread
can (maliciously) overwrite the first thread’s code cache to
launch attacks. This is similar to the classic time-of-check-
to-time-of-use (TOCTTOU) problem [29], where the resource
to be accessed is modified between the check and the use by
exploiting race conditions.

In this paper, we demonstrate the feasibility of such race-
condition-based code cache injection attacks, through a proof-
of-concept exploit against modern browsers that support the
Web Worker [57] specification. Rather than relying on a per-
manently writable code cache [43], our attack leverages race
conditions and can bypass permission-switching-based WdbX
enforcement (Figure 1). In this attack, the malicious JS code
utilizes web workers to create a multi-threaded environment.
After forcing a worker thread into the compilation state, the
main JS thread can exploit vulnerabilities of the browser to
inject shellcode into the worker thread’s code cache.

To fundamentally prevent such attacks, we propose secure
dynamic code generation (SDCG), a new architecture that 1)
enables dynamic code generation to comply with the WX
policy; 2) eliminates the described race condition; 3) can be
easily adopted; and 4) introduces less performance overhead
compared to alternative solutions. SDCG achieves these goals
through a multi-process-based architecture. Specifically, in-
stead of generating and modifying code in a single process,
SDCG relocates the DCG functionality to a second trusted
process. The code cache is built upon memory shared between
the original process and the trusted process. In the original
process, the code cache is mapped as RX; and in the trusted
process, the same memory is mapped as WR. By doing so,
the code cache remains read-only under all circumstances
in the untrusted process, eliminating the race condition that
allows the code cache to be writable to untrusted thread(s).
At the same time, the code generator in the trusted process
can freely perform code generation, patching and garbage
collection as usual. To enable transparent interaction between
the code generator and the generated code, we only need to
add a few wrappers that make the code generator invocable
through remote procedure calls (RPC). Since only functions
that modify code cache need to be handled, the effort for
adding wrappers is small.

We implemented SDCG for two types of popular code
generators: JS engine and DBT. For JS engine, our implemen-
tation is based on V8 [24]. For DBT, our implementation is
based on Strata [48]. Our implementation experience showed
that porting code generators to SDCG only requires a small
modification: besides the shareable part, which is about 500
lines of C code (LoC), we only added about 2,500 LoC
for V8 and about 1,000 LoC for Strata. We evaluated the
security of SDCG and the performance overhead of our two
prototype implementations. The results showed that SDCG is
secure under our threat model and the performance overhead
introduced by our prototype implementations is small: around
6.90% (32-bit) and 5.65% (64-bit) for V8 benchmark suite;

and around 1.64% for SPEC CINT 2006 (additional to Strata’s
own overhead).

In summary, we made the following contributions:

e Beyond known exploit techniques against permanently
writable code cache [43], we demonstrated the feasibility
of exploiting race conditions to maliciously modify code
cache protected by permission switching based WX
enforcement; and discussed the severity of such attacks
(Section III).

e We proposed secure dynamic code generation (SDCG), a
multi-process-based architecture that provides better secu-
rity (mandatory, non-bypassible W@X enforcement), low
performance overhead, and easy adoption (Section IV).

e We implemented two prototypes of SDCG, one for V8
JS engine and one for Strata dynamic binary translator
(Section V).

e We evaluated the performance overhead of our two pro-
totype implementations (Section VI).

II. RELATED WORK

In this section, we discuss the techniques that could be
used to protect a code cache from being maliciously modified
and explain their disadvantages. We also discuss other forms
of attacks against the JIT engines and their countermeasures.

A. Software-based Fault Isolation

Software-based fault isolation (SFI) [58] can be used to
confine a program’s ability to access memory resources. On
32-bit x86 platforms, SFI implementations usually leverage
segment registers [20, 62] to confine memory accesses for
the benefit of low runtime overhead. On other platforms
without segment support (e.g., x86-64, ARM), SFI implemen-
tations use either address masking [49] or access control lists
(ACL) [10], introducing higher runtime overhead.

Once memory accesses — especially write accesses — are
confined, SFI can prevent untrusted code from overwriting
security sensitive data, such as the code cache. Our SDCG
solution differs from SFI in several respects. First, SFI’s
overhead comes from the execution of the extra inline checks;
SDCG’s overhead comes from remote procedure calls and
cache synchronization on multi-core systems. Therefore, if
execution stays mostly within the code cache, SDCG will
introduce less overhead than SFI. On the other hand, if
execution needs to be frequently switched between the code
generator and the generated code, then SFI could be faster.
Since most modern code generators try to make the execution
stay as long as possible in the code cache, our approach is
more suitable in most cases.

Second, to reduce the overhead of address masking, many
SFI solutions [49] use ILP32 (32-bit integer, long, pointer)
primitive data types, limiting data access to 4GB of space,
even on a 64-bit platform. SDCG does not have this limitation.

It is worth noting that some efforts have been made to
apply SFI to JIT engines [5, 38]. Despite relatively higher
overhead, the threat model of these approaches usually did not
consider scenarios where the JIT compiler is only a component
of a larger software solution, such as a web browser. Since
most web browser vulnerabilities are found outside the JIT
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Fig. 1: A permission switching based W®X enforcement. The code cache is kept as read-only when the generated code is
executing. When the code generator is invoked (¢1), the permission is changed to writable; and when the generator finishes its

task (¢2), the permission is changed back to read-only.
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Fig. 2: Race-condition-based attack using two threads. With switching based W&X enforcement, a single thread (A) can no
longer attack the code cache (access 1), but the code cache can still be attacked using multiple threads. When the code generator
is serving one thread (access 2), the code cache will also become writable for other threads (access 3). The attack window is ¢2
- t1. Once the code generator finishes its task, the code cache becomes read-only again (access 4).

engines [17], to apply such techniques one would have to apply
SFI to other browser components as well. This could result in
even higher performance overhead. From this perspective, we
argue that our solution is more realistic in practice.

B. Memory Safety

Attacks on code caches (at randomized locations) rely
on the ability to write to a memory area specified by an
attacker. Therefore, such attacks could be defeated by memory
safety enforcement, which prevents all unexpected memory
reads and writes. However, many programs are written in
low-level languages like C/C++, and are prone to memory
corruption bugs, leading to the majority of security vulner-
abilities for these languages. Unfortunately, existing memory
safety solutions [6, 19, 31, 32, 41, 51, 61] for C/C++ programs
tend to have much higher performance overhead than SFI or
other solutions, prohibiting their adoptions. For example, the
combination of Softbound [31] and CETS [32] provides a
strong spatial and temporal memory safety guarantee, but they
were reported to have 116% average overhead on SPEC CPU
2000 benchmark. Compared with this direction of research,
even though SDCG provides less security guarantees, it is still
valuable because it fully blocks a powerful attack vector with
minimal runtime overhead.

C. Control Flow Integrity

Control flow hijacking is a key step in many real world
attacks. As DEP becomes ubiquitous, more and more attacks
rely on return-to-libc [53] or ROP [52] to hijack control
flow. Many solutions [2, 63, 64] have been proposed to
enforce control flow integrity (CFI) policy. With CFI policy,

a program’s control flow cannot be hijacked to unexpected
locations. CFI could protect the code cache in some way,
e.g., attackers cannot overwrite the code cache by jumping
to arbitrary addresses of the code generator.

However, attackers can still utilize arbitrary memory write
vulnerabilities to overwrite the code cache without break-
ing CFL. Once the code cache is overwritten, injected code
could be invoked through normal function invocations, without
breaking the static CFI policy.

Moreover, when extending CFI to dynamically generated
code, without proper write protection the embedded enforce-
ment checks can also be removed once attackers can overwrite
the code. From this perspective, SDCG is complementary to
CFI because it guarantees one basic assumption of CFI: code
integrity protection.

D. Process Sandbox

A delegation-based sandbox architecture, a.k.a. the broker
model [21], has been widely adopted by the industry and used
in Google Chrome [23], Windows 8 [30], Adobe Reader [3],
etc. In this architecture, the sandboxed process drops most of
its privileges and delegates all security sensitive operations to
the broker process. The broker process then checks whether the
request complies with the security policy. SDCG is based on
the same architecture. Using this architecture, we 1) delegate
all the operations that will modify the code cache (e.g., code
installation, patching, and deletion) to the translator process;
and 2) make sure the W@X policy is mandatory.



E. Attacks on JIT engines

Attackers have targeted the code cache for its writable
and executable properties. Currently, the most popular exploit
technique is JIT spray [54], an extension to classic heap spray
attacks [18]. Heap spray is used to bypass ASLR without
guessing the address of injected shellcode. This technique
becomes unreliable after DEP is deployed because the heap
is no longer executable. To bypass this, attackers turned to
JIT engines. The JIT spray attack abuses the JIT engine to
emit chunks of predictable code, and then hijacks control flow
toward the entry or middle of one of these code chunks. DEP
or WEX is thus bypassed because these code chunks reside
in the executable code cache. Most JIT engines have since
deployed different mitigation techniques to make the layout
of the code cache unpredictable, e.g., random NOP insertion,
constant splitting, etc. Researchers have also proposed more
robust techniques [5, 60] to prevent such attacks.

Rather than abusing JIT engines to create expected code,
attackers can also abuse the writable property of the code cache
and directly overwrite generated code [43]. In the next section,
we first extend this attack to show that even with a permission
switching based WdX enforcement, attackers can still leverage
race conditions to bypass such enforcement.

III. ATTACKING THE CODE CACHE

In this section, we describe in detail the code cache
injection threat we are addressing in this paper. We begin this
section with our assumptions and threat model. Next, we show
how the code cache can be attacked to bypass state-of-the-art
exploit mitigation techniques. Finally, we demonstrate how a
naive WéX enforcement can be bypassed by exploiting race
conditions.

A. Assumptions and Threat Model

SDCG focuses on preventing remote attackers from leverag-
ing the code cache as an attack vector to achieve arbitrary code
execution. We focus on two classic attack scenarios discussed
as follows. In both scenarios, we assume the code generator
itself is trusted and does not have security vulnerabilities.

e Foreign Attacks. In this scenario, the code generator is
a component of a program (e.g., a web browser). The
program is benign, but components other than the code
generator are assumed to be vulnerable when handling
input or contents provided by an attacker (e.g., a malicious
web page). Attackers can then exploit the vulnerable
components to attack the code cache.

o Jailbreak Attacks. In this scenario, the code generator is
used to sandbox or monitor an untrusted program, and
attacks are launched within the code cache. This could
happen under two circumstances. First, the sandboxed
program itself is malicious. Second, the program is be-
nign, but the dynamically generated code has vulnerabil-
ities that can be exploited by attackers to jailbreak.

Without loss of generality, we assume that the following
mitigation mechanisms for both general and JIT-based exploits
have been deployed on the target system.

Address Space Layout Randomization. We assume that
the target system has at least deployed base address ran-
domization, and all predictable memory mappings have
been eliminated.

e JIT Spray Mitigation. For JIT engines, we assume that
they implement a full-suite of JIT spray mitigation mecha-
nisms, including but not limited to random NOP insertion,
constant splitting, and those proposed in [5, 60].

e Guard Pages. We assume the target system creates guard
pages (i.e., pages without access permission) to wrap each
pool of the code cache, as seen in the Google V8 JS
engine. These guard pages can prevent buffer overflows,
both overflows out of the code cache, and overflows into
the code cache.

e Page Permissions. We assume that the underlying hard-
ware has support for mapping memory as non-executable
(NX), and that writable data memory like the stack and
normal heap are set to be non-executable. Furthermore,
we assume that all statically generated code has been set
to non-writable to prevent overwriting. However, almost
all JIT compilers map the code cache as both writable
and executable.

The target system can further deploy the following ad-
vanced mitigation mechanisms for the purpose of sandboxing
and monitoring:

e Fine-grained Randomization. The target system can en-
force fine-grained randomization by permuting the order
of functions [27] or basic blocks [59], randomizing the
location of each instruction [39], or even randomizing the
instruction set [8].

e Control Flow Hijacking Mitigation. The target system can
deploy control flow hijacking mitigation mechanisms, in-
cluding (but not limited to): control flow integrity enforce-
ment, either coarse-grained [63, 64] or fine-grained [2,
37]; return-oriented programming detection [13, 40]; and
dynamic taint analysis based hijacking detection [36].

To allow overwriting of the code cache, we assume
there is at least one vulnerability that allows attackers to
write to an attacker-specified address with attacker-provided
contents. We believe this is a realistic assumption, because
many types of vulnerabilities can be exploited to achieve this
goal, such as format string [35], heap overflow [16], use-
after-free [14], integer overflow [15], etc. For example, the
attack described in [43] obtained this capability by exploiting
an integer overflow vulnerability (CVE-2013-6632); in [11],
the author described how five use-after-free vulnerabilities
(CVE-2013-0640, CVE-2013-0634, CVE-2013-3163, CVE-
2013-1690, CVE-2013-1493) can be exploited to perform
arbitrary memory writes. It is worth noting that in many attack
scenarios, the ability to do arbitrary memory write can easily
lead to arbitrary memory read and information disclosure
abilities.

B. Overwriting the Code Cache to Bypass Exploit Mitigation
Techniques

1) Software Dynamic Translator: For ease of discussion,
we use the term software dynamic translator (SDT) to represent
software that leverages dynamic code generation to translate
code in one format to another format. Before describing the



attacks, we first give a brief introduction on SDT. A core task
of all SDTs is to maintain a mapping between untranslated
code and translated code. Whenever a SDT encounters a new
execution unit (depending on the SDT, the execution unit could
be a basic block, a function, or a larger chunk of code), it
first checks whether the execution unit has been previously
translated. If so, it begins executing the translated code residing
in the code cache; otherwise, it translates this new execution
unit and installs the translated code into the code cache.

2) Exploit Primitives: In this section, we describe how the
code cache with full WRX permission can be overwritten. This
is done in two steps. First, we need to bypass ASLR and find
out where the code cache is located. Second, we need to write
to the identified location.

a) Bypassing ASLR: The effectiveness of ASLR or
any randomization based mitigation mechanism relies on two
assumptions: i) the entropy is large enough to stop brute-force
attacks; and ii) the adversary cannot learn the random value
(e.g., module base, instruction set).

Unfortunately, these two assumptions rarely hold in prac-
tice. First, on 32-bit platforms, user space programs only
have 8 bits of entropy for heap memory, which is subject
to brute-force guessing [53] and spray attacks [18]. Second,
with widely available information disclosure vulnerabilities,
attackers can easily recover the random value [46, 50]. In fact,
researchers have demonstrated that even with a single restricted
information disclosure vulnerability, it is possible to traverse
a large portion of memory content [55].

When attacking a code cache, we can either launch a
JIT spray attack to prepare a large number of WRX pages
on platforms with low entropy, or leverage an information
disclosure vulnerability to pinpoint the location of the code
cache. Note that as one only needs to know the location of
the code cache, most fine-grained randomizations that try to
further randomize the contents of memory are ineffective for
this attack. Since the content of code cache will be overwritten
in the next step (described below), none of the JIT spray
mitigation mechanisms can provide effective protection against
this attack.

b) Writing to the Code Cache: The next step is to inject
shellcode to the code cache. In most cases, the code cache will
not be adjacent to other writable heap memory (due to ASLR),
and may also be surrounded by guard pages. For these reasons,
we cannot directly exploit a buffer overflow vulnerability to
overwrite the code cache. However, as our assumption section
suggests, besides logic errors that directly allow one to write
to anywhere in memory, several kinds of memory corruption
vulnerabilities can also provide arbitrary memory write ability.
In the following example, an integer overflow vulnerability is
exploited to acquire this capability.

3) An In-the-Wild Attack: We have observed one disclosed
attack [43] that leveraged the code cache to achieve reliable ar-
bitrary code execution. This attack targeted the mobile Chrome
browser. By exploiting an integer overflow vulnerability, the
attack first gained reliable arbitrary memory read and write
capabilities. Using these two capabilities, the attack subse-
quently bypassed ASLR and located the permanently writable
and executable code cache. Finally, it injected shellcode into
the code cache and turned control flow to the shellcode.

4) Security Implication: In practice, we have only observed
this single attack that injects code into the code cache. We
believe this is mainly due to the convenience of a popular
ROP attack pattern, which works by: i) preparing traditional
shellcode in memory; ii) exploiting vulnerabilities to launch an
ROP attack; iii) using the ROP gadgets to turn on the execution
permission of memory where the traditional shellcode resides;
and iv) jumping to the traditional shellcode to finish the
intended malicious tasks. However, once advanced control flow
hijacking prevention mechanisms such as fine-grained CFI are
deployed, this attack pattern will be much more difficult to
launch.

The code cache injection attack can easily bypass most of
the existing exploit mitigation mechanisms. First, all control
flow hijacking detection/prevention mechanisms such as CFI
and ROP detection rely on the assumption that the code
cannot be modified. When this assumption is broken, these
mitigation mechanisms are no longer effective. Second, any
inline reference monitor based security solution is not effective
because the injected code is not monitored.

C. Exploiting Race Conditions to Bypass WX Enforcement

A naive defense against the code cache injection attack is
to enforce WX by manipulating page permissions (Figure 1).
More specifically, when the code cache is about to be modified
(e.g., for new code generation or runtime garbage collection),
the code generator turns on the write permission and turns off
the execution permission (£1). When the code cache is about
to be executed, the generator turns off the write permission
and turns on the execution permission (¢2).

This solution prohibits the code cache to be both writable
and executable at the same time. If the target program is
single-threaded, this approach can prevent code cache injection
attacks. Since the code cache is only writable when the SDT
is executing and we assume that the SDT itself is trusted and
not vulnerable, attackers cannot hijack or interrupt the SDT to
overwrite the code cache. However, as illustrated in Figure 2, in
a more general multi-threaded programming environment, even
if the SDT is trusted, the code cache can still be overwritten
by other insecure threads when the the code cache is set to be
writable for one thread.

In this section, we use a concrete attack to demonstrate the
feasibility of such attacks, i.e., with naive WX enforcement,
it is still possible to overwrite the code cache with the same
exploit primitives described above.

1) Secure Page Permissions: Since the V8 JS engine does
not have the expected page permission protection, i.e., the
naive WéX enforcement, we implemented this naive protec-
tion in V8 to demonstrate of our attack.

By default, when a memory region is allocated from the OS
(e.g., viammap) for the code cache, it is allocated as executable
but not writable. We will turn on the write permission and turn
off the execution permission of the code cache for:

e New Code Installation. Usually, the JavaScript program
(e.g., a function) is first compiled into native code, and
then copied into the code cache. To allow the copy
operation, we need to turn on the write permission of
the code cache.



e Code Patching. Existing code in the code cache is patched
under certain circumstances. For instance, after new code
is copied into the code cache, its address is thus deter-
mined; instructions that require address operands from
this new code fragment are resolved and patched.

o Runtime Inline Caching. Inline caching is a special patch-
ing mechanism introduced to provide better performance
for JIT-compiled programs written in dynamically typed
languages. With runtime execution profile information,
the JIT compiler caches/patches the result (e.g., the result
of object property resolving) into instructions in the code
cache at runtime.

e Runtime Garbage Collection. The JavaScript engine needs
to manage the target JavaScript program’s memory via
garbage collection. This will require the code cache to
be modified for two main reasons. First, when an unused
code fragment needs to be removed; and second, when
a data object is moved to a new address by the garbage
collector, instructions referencing it have to be updated.

When these operations finish, or any code in the code cache
needs to be invoked, we turn off the write permission of the
code cache and turn on the execution permission.

To further reduce the attack surface, all of the above
policies are enforced with fine-grained granularity. That is,
1) each permission change only covers memory pages that
are accessed by the write or execution operations; and 2) the
write permission is turned on only when a write operation
is performed, and is turned off immediately after the write
operation finishes. This fine-grained implementation provides
maximum protection for code caches.

2) Multi-threaded Programming in SDT: To launch the
race-condition-based attack, we need two more programming
primitives. First, we need the ability to write multi-threaded
programs. Note that some SDTs such as Adobe Flash Player
also allows “multi-threaded” programming, but each “thread”
is implemented as a standalone OS process. For these SDTs,
since the code cache is only writable to the corresponding
thread, our proposed exploit technique would not work. Sec-
ond, since the attack window is generally small, we need the
ability to coordinate threads before launching the attack.

e Thread Primitives. A majority of SDTs have multi-
threaded programming support. JavaScript (JS) used to be
single-threaded and event-driven. With the new HTMLS
specification, JS also supports multi-threaded program-
ming through the WebWorker specification [57]. There
are two types of WebWorker: dedicated worker and
shared worker. In V8, the dedicated worker is imple-
mented as a thread within the same process; a shared
worker is implemented as a thread in a separate process.
Since we want to attack one JS thread’s code cache with
another JS thread, we leverage the dedicated worker. Note
that although each worker thread has its own code cache,
it is still possible to launch the attack, because memory
access permissions are shared by all threads in the same
process.

e Synchronization Primitives. To exploit the race condition,
two attacker-controlled threads need to synchronize their
operations so that the overwrite can happen within the
exact time window when the code cache is writable.

Since synchronization is an essential part of multi-
threaded programming, almost all SDTs support thread
synchronization. In JS, thread synchronization uses the
postMessage function.

3) A Proof-of-Concept Attack: Based on the vulnerability
disclosed in the previous real-world exploit, we built a proof-
of-concept race-condition-based attack on the Chrome browser.
Since the disclosed attack [43] already demonstrated how
ASLR can be bypassed and how arbitrary memory write
capability can be acquired, our attack focuses on how race
conditions can be exploited to bypass naive W@HX enforce-
ment. The high level workflow of our attack is as follows:

i) Create a Worker. The main JS thread creates a web worker,
and thus a worker thread is created.

ii) Initialize the Worker. The worker thread initializes its
environment, making sure the code cache is created.
It then sends a message to the main thread through
postMessage that it is ready.

iii) Locate the Worker’s Code Cache. Upon receiving the
worker’s message, the main JS thread locates the worker
thread’s code cache, e.g., by exploiting an information
disclosure vulnerability. In the Chrome V8 engine, at-
tackers can locate the code cache using the previously
disclosed exploit. Instead of following the pointers for the
current thread, attackers should go through the thread list
the JS engine maintains and follow pointers for the worker
thread. Then, the main thread informs the worker that it
is ready.

iv) Make the Code Cache Writable. Upon receiving the main
thread’s message, the worker thread begins to execute
another piece of code, forcing the SDT to update its
code cache. In V8, the worker can execute a function
that is large enough to force the SDT to create a new
MemoryChunk for the code fragment and set it to be
writable (for a short time).

v) Monitor and Overwrite the Code Cache. At the same time,
the main thread monitors the status of the code cache
and tries to overwrite it once its status is updated. In
V8, the main thread can keep polling the head of the
MemoryChunk linked list to identify the creation of a
new code fragment. Once a new code fragment is created,
the main thread can then monitor its content. Once the first
few bytes (e.g., the function prologue) are updated, the
main thread can try to overwrite the code cache to inject
shellcode. After overwriting, the main thread informs the
worker it has finished.

vi) Execute the Shellcode. Upon receiving the main thread’s
new message, the worker calls the function whose content
has already been overwritten. In this way, the injected
shellcode is executed.

It is worth noting that the roles of the main thread and the
worker thread cannot be swapped in practice, because worker
threads do not have access to the document object model
(DOM). Since many vulnerabilities exist within the rendering
engine rather than the JS engine, this means only the main
thread (which has the access to the DOM) can exploit those
vulnerabilities.

4) Reliability of the Race Condition: One important ques-
tion for any race-condition-based attack is its reliability. The



first factor that can affect the reliability of our attack is
synchronization, i.e., the synchronization primitive should be
fast enough so that the two threads can carry out the attack
within the relatively small attack window. To measure the
speed of the synchronization between the worker and the main
thread, we ran another simple experiment:

i) The main thread creates a worker thread;

ii) The worker thread gets a timestamp and sends it to the
main thread,;

iii) Upon receiving the message, the main thread sends an
echo to the worker;

iv) Upon receiving the message, the worker thread sends back
an echo;

v) The main thread and the worker repeatedly send echoes
to each other 1,000 times.

vi) The main thread obtains another timestamp and computes
the time difference.

The result shows that the average synchronization delay is
around 23 us. The average attack window (¢2—t1 in Figure 2)
of our fine-grained naive WX protection is about 43 ys. Thus,
in theory, the postMessage method is sufficiently fast to
launch a race condition attack.

The second and more important factor that can affect the
reliability of our attack is task scheduling. Specifically, if the
thread under the SDT context (e.g., the worker thread) is de-
scheduled by the OS while the attacking thread (e.g., the main
thread) is executing, then the attack window will be increased.
The only way to change the code cache’s memory permission
is through a system call, and a context switch is likely to
happen during the system call. For example, the system call for
changing memory access permissions on Linux is mprotect.
During the invocation of mprotect, since we are using fine-
grained protection, the virtual memory area needs to be split
or merged. This will trigger the thread to be de-scheduled. As
a result, the main thread (with higher priority than the worker)
can gain control to launch attacks.

Considering these two factors, we tested our attack against
the Chrome browser 100 times. Of these 100 tests, 91 suc-
ceeded.

IV. SYSTEM DESIGN

In this section, we present the design of SDCG. We have
two design goals: 1) SDCG should prevent all possible code
injection attacks against the code cache under our adversary
model; and 2) SDCG should introduce acceptable performance
overhead. In addition, SDCG is designed to be integrated with
the targeted SDT, and we assume that the source code of the
SDT is available.

A. Overview and Challenges

Since the root cause of the attack is a writable code
cache (either permanently or temporarily), we can prevent
such attacks making one of two design choices: 1) ensure
that nothing but the SDT can write to the code cache, e.g.,
through SFI or memory safety; and 2) ensure that the memory
occupied by the code cache is always mapped as RX. We
selected the second option for two reasons. First, we expect
that the performance overhead of applying SFI or memory

safety to a large, complex program (e.g., a web browser) would
be very high. Second, implementing the first choice requires
significant engineering effort.
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Fig. 3: Overview of SDCG’s multi-process-based architecture.
The gray memory areas are shared memory, others are mapped
as private (copy-on-write). Depending on the requirement, the
SDT’s code and data can be mapped differently.

Figure 3 shows the high level design of SDCG. The key
idea is that through shared memory, the same memory content
will be mapped into two (or more) different processes, with
different access permissions. In the untrusted process(es), the
code cache will be mapped as RX; but in the SDT process,
it will be mapped as WR. By doing so, SDCG prevents any
untrusted code from modifying the code cache. At the same
time, it allows the SDT to modify the code cache as usual.
Whenever the SDT needs to be invoked (e.g., to install a new
code fragment), the request will be served through a remote
procedure call (RPC) instead of a normal function call.

To build and maintain this memory model, we need to solve
following technical and engineering challenges. the

i) Memory Map Synchronization. Since the memory regions
occupied by the code cache are dynamically allocated and
can grow and shrink freely, we need an effective way
to dynamically synchronize memory mapping between
the untrusted process(es) and the SDT process. More
importantly, to make SDCG’s protection mechanism work
transparently, we have to make sure that the memory
is mapped at exactly the same virtual address in all
processes.

ii) Remote Procedure Call. After relocating the SDT to
another process, we need to make it remotely invocable by
wrapping former local invocations with RPC stubs. Since
RPC is expensive, we need to reduce the frequency of
invocations, which also reduces the attack surface.

iti) Permission Enforcement. Since SDCG’s protection is based
on memory access permissions, we must make sure that
untrusted code cannot tamper with our permission scheme.
Specifically, memory content can be mapped as either
writable or executable, but never both at the same time.



B. Memory Map Synchronization

Synchronizing memory mapping between the untrusted
process(es) and the SDT process is a bi-directional issue. On
one hand, when the SDT allocates a new code fragment in the
SDT process, we should map the same memory region in the
untrusted process(es) at exactly the same address; otherwise
the translated code will not work correctly (e.g., create an
incorrect branching target). On the other hand, the untrusted
process may also allocate some resources that are critical to
the SDT. For example, in the scenario of binary translation,
when the untrusted process loads a dynamically linked module,
we should also load the same module at the same address
in the SDT process; otherwise the SDT will not be able to
locate the correct code to be translated. Moreover, we want this
synchronization to be as transparent to the SDT as possible,
to minimize code changes.

When creating shared memory, there are two possible
strategies: on-demand and reservation-based. On-demand map-
ping creates the shared memory at the very moment a new
memory region is required, e.g., when the SDT wants to add
a new memory region to the code cache. However, as the
process address space is shared by all modules of a program,
the expected address may not always be available in both
the untrusted process and the SDT process. For this reason,
we choose the reservation-based strategy. That is, when the
process is initialized, we reserve (map) a large chunk of
shared memory in both the untrusted process(es) and the SDT
process. Later, any request for shared memory will be allocated
from this shared memory pool. Note that in modern operating
systems, physical memory resources are not mapped until the
reserved memory is accessed, so our reservation-based strategy
does not impose significant memory overhead.

Once the shared memory pool is created, synchronization
can be done via inter-process communication (IPC). Specif-
ically, when the SDT allocates a new memory region for
the code cache, it informs the untrusted process(es) about
the base address and the size of this new memory region.
Having received this event, the untrusted process(es) maps a
memory region with the same size at the same base address
with the expected permission (RX). Similarly, whenever the
untrusted process allocates memory that needs to be shared, a
synchronization event is sent to the SDT process.

C. Remote Procedure Call

Writing RPC stubs for the SDT faces two problems:
argument passing and performance. Argument passing can
be problematic because of pointers. If a pointer points to a
memory location that is different between the untrusted process
and the SDT process, then the SDT ends up using incorrect
data and causes run-time errors. Vice versa, if the returned
value from the SDT process contains pointers that point to
data not copied back, the untrusted code ends up running
incorrectly. One possible solution for the stub to serialize
the object before passing it to the remote process instead of
simply passing the pointer. Unfortunately, not all arguments
have built-in serialization functionality. In addition, when
an argument is a large object, performing serialization and
copy for every RPC invocation introduces high performance
overhead. Thus, in general, stub generation is not easy without
support from the SDT or from program analysis.

To avoid this problem, SDCG takes a more systematic ap-
proach. Specifically, based on the observation that a majority of
data that the SDT depends on is either read-only or resides in
dynamically mapped memory, we extend the shared memory to
also include the dynamic data the SDT depends on. According
to the required security guarantee, the data should be mapped
with different permissions. By default, SDCG maps the SDT’s
dynamic data as read-only in the untrusted process, to prevent
tampering by the untrusted code. However, if non-control data
attacks are not considered, the SDT’s dynamic data can be
mapped as WR in the untrusted process. After sharing the data,
we only need to handle a few cases where writable data (e.g.,
pointers within global variables) is not shared/synchronized.

Since RPC invocations are much more expensive than
normal function calls, we want to minimize the frequency
of RPC invocation. To do so, we take a passive approach.
That is, we do not convert an entry from the SDT to RPC
unless it modifies the code cache. Again, we try to achieve
this goal without involving heavy program analysis. Instead,
we leverage the regression tests that are usually distributed
along with the source code. More specifically, we begin with
no entries being converted to RPC and gradually convert them
until all regression tests pass.

While our approach can be improved with more automation
and program analysis, we leave these as future work because
our main goal here is to design and validate that our solution
is effective against the new code cache injection attacks.

D. Permission Enforcement

To enforce mandatory WX, we leverage the delegation-
based sandbox architecture [21]. Specifically, we intercept
all system calls related to virtual memory management, and
enforce the following policies in the SDT process:

() Memory can not be mapped as both writable and exe-
cutable.

(II) When mapping a memory region as executable, the base
address and the size must come from the SDT process,
and the memory is always mapped as RX.

(IIT) The permission of non-writable memory cannot be
changed.

E. Security Analysis

In this section, we analyze the security of SDCG under
our threat model. First, we show that our design can enforce
permanent WX policy. The first system call policy ensures
that attackers cannot map memory that is both writable and
executable. The second policy ensures that attackers cannot
switch memory from non-executable to executable. The combi-
nation of these two policies guarantees that no memory content
can be mapped as both writable and executable, either at the
same time or alternately. Next, the last policy ensures that if
there is critical data that the SDT depends on, it cannot be
modified by attackers. Finally, since the SDT is trusted and
its data is protected, the second policy can further ensure that
only SDT-verified content (e.g., code generated by the SDT)
can be executable. As a result, SDCG can prevent any code
injection attack.



V. IMPLEMENTATION

We implemented two prototypes of SDCG, one for the
Google V8 JS engine [24], and the other for the Strata
DBT [48]. Both prototypes were implemented on Linux. We
chose these two SDTs for the following reasons. First, JS
engines are one of the most widely deployed SDTs. At the
same time, they are also one of the most popular stepping
stones for launching attacks. Among all JS engines, we chose
V8 because it is open source, highly ranked, and there is
a disclosed exploit [43]. Second, DBTs have been widely
used by security researchers to build various security solu-
tions [8, 12, 25, 26, 36]. Among all DBTs, we chose Strata
because 1) it has been used to implement many promising se-
curity mechanisms, such as instruction set randomization [26],
instruction layout randomization [25], etc.; and 2) its academic
background allowed us to have access to its source code, which
is required for implementation of SDCG.

A. Shared Infrastructure

The memory synchronization and system call filtering
mechanisms are specific to the target platform, but they can
be shared among all SDTs.

1) Seccomp-Sandbox: Our delegation-based sandbox is
built upon the seccomp-sandbox [22] from Google Chrome.
Although Google Chrome has switched to a less complicated
process sandbox based on seccomp-bpf [1], we found that
the architecture of seccomp-sandbox serves our goal better.
Specifically, since seccomp only allows four system calls once
enabled, and not all system calls can be fulfilled by the broker
(e.g., mmap), the seccomp-sandbox introduced a trusted thread
to perform system calls that cannot be delegated to the broker.
To prevent attacks on the trusted thread, the trusted thread
operates entirely on CPU registers and does not trust any
memory that is writable to the untrusted code. When the trusted
thread makes a system call, the system call parameters are
first verified by the broker, and then passed through a shared
memory that is mapped as read-only in the untrusted process.
As a result, even if the other threads in the same process are
compromised, they cannot affect the execution of the trusted
thread. This provides a perfect foundation to securely build our
memory synchronization mechanism and system call filtering
mechanism.

To enforce the mandatory WéX policy, we modified the
sandbox so that before entering sandbox mode, SDCG enu-
merates all memory regions and converts any WRX region to
RX.

For RPC invocation, we also reused seccomp-sandbox’s
domain socket based communication channel. However, we did
not leverage the seccomp mode in our current implementation
for several reasons. First, it is not compatible with the new
seccomp-bpf-based sandbox used in Google Chrome. Second,
it intercepts too many system calls that are not required by
SDCG. More importantly, both Strata and seccomp-bpf provide
enough capability for system call filtering.

2) Shared Memory Pool: During initialization, SDCG re-
serves a large amount of consecutive memory as a pool. This
pool is mapped as shared (MAP_SHARED), not file backed
(MAP_ANONYMOUS) and with no permission (PROT_NONE).

After this, any mmap request from the SDT allocates memory
from this pool (by changing the access permission) instead
of using the mmap system call. This guarantees any SDT
allocated region can be mapped at exactly the same address in
both the SDT process and the untrusted process(es).

After the sandbox is enabled, whenever the SDT calls
mmap, SDCG generates a synchronized request to the un-
trusted process(es), and waits until the synchronization is done
before returning to the SDT. In the untrusted process, the
synchronization event is handled by the trusted thread. It reads
a synchronization request from the IPC channel and then
changes the access permission of the given region to the given
value. Since the parameters (base address, size and permission)
are passed through the read-only IPC channel and the trusted
thread does not use a stack, it satisfies our security policy for
mapping executable memory.

Memory mapping in the untrusted process(es) is forwarded
to the SDT process by the system call interception mechanism
of the sandbox. The request first goes through system call
filtering to ensure the security policy is enforced. SDCG then
checks where the request originated. If the request is from
the SDT, or is a special resource the SDT depends on (e.g.,
mapping new modules needs to be synchronized for Strata),
the request is fulfilled from the shared memory pool. If it is
a legitimate request from the untrusted code, the request is
fulfilled normally.

3) System Call Filtering: SDCG rejects the following types
of system calls.

e mmap with writable (PROT_WRITE) and executable
(PROT_EXEC) permission.

e mprotect or mremap when the target region falls into
a protected memory region.

e mprotect with executable (PROT_EXEC) permission.

SDCG maintains a list of protected memory regions. After
the SDT process is forked, it enumerates the memory mapping
list through /proc/self/maps, and any region that is
executable is included in the list. During runtime, when a new
executable region is created, it is added to the list; when a
region is unmapped, it is removed from the list. If necessary,
the SDT’s dynamic data can also be added to this list.

For Strata, this filtering is implemented by intercepting the
related system calls (mmap, mremap, and mprotect). For
V8 (integrated with the Google Chrome browser), we rely on
the seccomp-bpf filtering policies.

B. SDT Specific Handling

Next, we describe some implementation details that are
specific to the target SDT.

1) Implementation for Strata: Besides the code cache,
many Strata-based security mechanisms also involve some
critical metadata (e.g., the key to decrypt a randomized in-
struction set) that needs to be protected. Otherwise, attackers
can compromise such data to disable or mislead critical func-
tionalities of the security mechanisms. Thus, we extended the
protection to Strata’s code, data, and the binary to be translated.
Fortunately, since Strata directly allocates memory from mmap
and manages its own heap, this additional protection can be



easily supported by SDCG. Specifically, SDCG ensures that all
the memory regions allocated by Strata are mapped as either
read-only or inaccessible. Note that we do not need to protect
Strata’s static data, because once the SDT process is forked, the
static data is copy-on-write protected, i.e., while the untrusted
code could modify Strata’s static data, the modification cannot
affect the copy in the SDT process.

Writing RPC stubs for Strata also reflects the differences in
the attack model: since all dynamic data are mapped as read-
only, any functionality that modified the data also needs to be
handled in the SDT process.

Another special case for Strata is the handling of process
creation, i.e., the clone system call. The seccomp-sandbox
only handles the case for thread creation, which is sufficient
for Google Chrome (and V8). But for Strata, we also need to
handle process creation. The challenge for process creation is
that once a memory region is mapped as shared, the newly
created child process will also inherit this memory regions as
shared. Thus, once the untrusted code forks a new process,
this process also shares the same memory pool with its parent
and the SDT process. If we want to enforce a 1 : 1 serving
model, we need to un-share the memory. Unfortunately, un-
sharing memory under Linux is not easy: one needs to 1) map
a temporary memory region, 2) copy the shared content to this
temporary region, 3) unmap the original shared memory, 4)
map a new shared memory region at exactly the same address,
5) copy the content back, and 6) unmap the temporary memory
region. At the same time, the child process is likely to either
share the same binary as its parent, which means it can be
served by the same SDT; or call execve immediately after
the fork, which completely destroys the virtual address space
it inherited from its parent. For these reasons, we implemented
a N : 1 serving model for Strata, i.e., one SDT process
serves multiple untrusted processes. The clone system call
can then be handled in the same way for both thread creation
and process creation. The only difference is that when a new
memory region is allocated from the shared memory pool, all
processes need to be synchronized.

2) Implementation for V8: Compared with Strata, the
biggest challenge for porting V8 to SDCG is the dynamic data
used by V8. Specifically, V8 has two types of dynamic data:
JS related data and its own internal data. The first type of
data is allocated from custom heaps that are managed by V8
itself. Similar to Strata’s heap, these heaps directly allocate
memory from mmap, thus SDCG can easily handle this type of
data. The difficulty is from the second type of data, which
is allocated from the standard C library (glibc on Linux).
This makes it challenging to track which memory region is
used by the JS engine. Clearly, we cannot make the standard
C library allocate all the memory from the shared memory
pool. However, as mentioned earlier in the design section,
we have to share data via RPC and avoid serializing objects,
especially C++ objects, which can be complicated. To solve
this problem, we implemented a simple arena-based heap that
is backed by the shared memory pool and modified V8 to
allocate certain objects from this heap. Only objects that are
involved in RPC need to be allocated from this heap, the rest
can still be allocated from the standard C library.

Another problem is the stack. Strata does not share the
same stack as the translated program, so it never reads data
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from the program’s stack. This is not true for V8. In fact, many
objects used by V8 are allocated on the stack. Thus, during
RPC handling, the STD process may dereference pointers
pointing to the stack. Moreover, since the stack is assigned
during thread creation, it is difficult to ensure that the program
always allocates stack space from our shared memory pool.
As a result, we copy content between the two processes.
Fortunately, only 3 RPCs require a stack copy. Note that
because the content is copied to/from the same address, when
creating the trusted SDT process, we must assign it a new
stack instead of relying on copy-on-write.

Writing RPC stubs for V8 is more flexible than Strata be-
cause dynamic data is not protected. For this reason, we would
prefer to convert functions that are invoked less frequently. To
achieve this goal, we followed two general principles. First,
between the entry of the JS engine and the point where the
code cache is modified, many functions could be invoked. If
we convert a function too high in the calling chain, and the
function does not result in modification of the code cache
under another context, we end up introducing unnecessary RPC
overhead. For instance, the first time a regular expression is
evaluated, it is compiled; but thereafter, the compiled code can
be retrieved from the cache. Thus, we want to convert functions
that are post-dominated by operations that modify the code
cache. Conversely, if we convert a function that is too low in
the calling chain, even though the invocation of this function
always results in modification of the code cache, the function
may be called from a loop, e.g., marking processes during
garbage collection. This also introduces unnecessary overhead.
Thus, we also want to convert functions that dominate as many
modifications as possible. In our prototype implementation,
since we did not use program analysis, these principles were
applied empirically. In the end, we added a total of 20 RPC
stubs.

VI. EVALUATION

In this section, we describe the evaluation of the ef-
fectiveness and performance overhead of our two prototype
implementations.

A. Setup

For our port of the Strata DBT, we measured the perfor-
mance overhead using SPEC CINT 2006 [56]. Our port of the
V8 JS engine was based on revision 16619. The benchmark
we used to measure the performance overhead is the V8
Benchmark distributed with the source code (version 7) [44].
All experiments were run on a workstation with one Intel Core
17-3930K CPU (6-core, 12-thread) and 32GB memory. The
operating system is the 64-bit Ubuntu 13.04 with kernel 3.8.0-
35-generic.

B. Effectiveness

In Section IV-E, we provided a security analysis of our
system design, which showed that if implemented correctly,
SDCG can prevent all code cache injection attacks. In this sec-
tion, we evaluate our SDCG-ported V8 prototype to determine
whether it can truly prevent the attack we demonstrated in
Section III-C3.



The experiment was done using the same proof-of-concept
code as described in Section III-C3. As the attack relies on a
race condition, we executed it 100 times. For the version that
is protected by naive W& X enforcement, the attack was able
to inject shellcode into the code cache 91 times. For SDCG-
ported version, all 100 attempts failed.

C. Micro Benchmark

The overhead introduced by SDCG comes from two major
sources: RPC invocation and cache coherency.

1) RPC Overhead: To measure the overhead for each RPC
invocation, we inserted a new field in the request header
to indicate when this request was sent. Upon receiving the
request, the handler calculates the time elapsed between this
and the current time. Similarly, we also calculated the time
elapsed between the sending and receiving of return values. To
eliminate the impact from cache synchronization, we pinned
all threads (in both the untrusted process and the SDT process)
to a single CPU core.

The frequency of RPC invocation also effects overall over-
head, so we also collected this number during the evaluation.

Table I shows the result from the V8 benchmark, using
the 64-bit release build. The average latency for call request
is around 3-4 pus and the average latency for RPC return
is around 4-5 pus. Thus, the average latency for an RPC
invocation through SDCG’s communication channel is around
8-9 us. The number of RPC invocations is between 1,525 and
6,000. Since the input is fixed, this number is stable, with
small fluctuations caused by garbage collection. Compared to
the overall overhead presented in the next section, it follows
that the larger the number of RPC invocations, the grater the
value of overhead. Among all RPC invocations, less than 24%
require a stack copy.

2) Cache Coherency Overhead: SDCG involves at least
three concurrently running threads: the main thread in the
untrusted process, the trusted thread in the untrusted process,
and the main thread in the SDT process. This number can
increase if the SDT to be protected already uses multiple
threads. On a platform with multiple cores, these threads can
be scheduled to different cores. Since SDCG depends heavily
on shared memory, OS scheduling for these threads can also
affect performance, i.e., cache synchronization between threads
executing on different cores introduces additional overhead.

In this section, we report this overhead at the RPC in-
vocation level. In the next section, we present its impact on
overall performance. The evaluation also uses V8 benchmark.
To reduce the possible combination of scheduling, we disabled
all other threads in V8, leaving only the aforementioned three
threads. The Intel Core i7-3930K CPU on our testbed has
six cores. Each core has a dedicated 32KB L1 data cache
and 256KB integrated L2 cache. A 12MB L3 cache is shared
among all cores. When Hyperthreading is enabled, each core
can execute two concurrent threads.

Given the above configuration, we have tested the following
scheduling:

i) All threads on a single CPU thread (affinity mask = {0});
ii) All threads on a single core (affinity mask = {0,1});
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iii) Two main threads that frequently access shared memory
on a single CPU thread, trusted thread freely scheduled
(affinity mask = {0},{*});

iv) Two main threads on a single core, trusted thread freely
scheduled (affinity mask = {0,1},{*});

v) All three threads on different cores (affinity mask =
{0}.{2},{4}); and

vi) All three threads freely scheduled (affinity mask

{FLLD.

Table II shows the result, using the 64-bit release build.
All the numbers are for RPC invocation, with return latency
omitted. Based on the result, it is clear that scheduling has a
great impact on the RPC latency. If the two main threads are
not scheduled on the same CPU thread, the average latency
can exacerbate to 3x-4x slower. On the other hand, scheduling
for the trusted thread has little impact on the RPC latency.
This is expected because the trusted thread is only utilized for
memory synchronization.

D. Macro Benchmark

In this section, we report the overall overhead SDCG
introduces. Since OS scheduling can have a large impact on
performance, for each benchmark suite, we evaluated two CPU
schedules. The first (Pinned) pins both the main threads from
the untrusted process and the SDT process to a single core;
and the second (Free) allows the OS to freely schedule all
threads.

1) SPEC CINT 2006: Both the vanilla Strata and the
SDCG-ported Strata are built as 32-bit. The SPEC CINT
2006 benchmark suite is also compiled as 32-bit. Since all
benchmarks from the suite are single-threaded, the results of
different scheduling strategies only reflect the overhead caused
by SDCG.

Table III shows the evaluation result. The first column
is the result of running natively. The second column is the
result for Strata without SDCG. We use this as the baseline
for calculating the slowdown introduced by SDCG. The third
column is the result for SDCG with pinned schedule, and the
last column is the result for SDCG with free schedule. Since
the standard deviation is small (less than 1%), we omitted this
information.

The corresponding slowdown is shown in Figure 4. For all
benchmarks, the slowdown introduced by SDCG is less than
6%. The overall (geometric mean) slowdown is 1.46% for the
pinned schedule, and 2.05% for the free schedule.

Since SPEC CINT is a computation-oriented benchmark
suite and Strata does a good job reducing the number of trans-
lator invocations, we did not observe a significant difference
between the pinned schedule and the free schedule.

2) JavaScript Benchmarks: Our port of V8 JS engine was
based on revision 16619. For better comparison with an SFI-
based solution [5], we performed the evaluation on both IA32
and x64 release builds. The arena-based heap we implemented
was only enabled for SDCG-ported V8. To reduce the possible
combination of scheduling, we also disabled all other threads
in V8.

Table IV shows the results for the IA32 build, and Table V
shows the results for the x64 build. The first column is the



TABLE I: RPC Overhead During the Execution of V8 Benchmark.

Avg Call Latency

Avg Return Latency

# of Invocations

Stack Copy (%)

No Stack Copy (%)

Richards 4.70 ps 4.54 ps 1525 362 (23.74%) 1163 (76.26%)
DeltaBlue 4.28 ps 4.46 ps 2812 496 (17.64%) 2316 (82.36%)
Crypto 3.99 us 4.28 ps 4596 609 (13.25%) 3987 (86.75%)
RayTrace 3.98 us 4.00 ps 3534 715 (20.23%) 2819 (79.77%)
EarlyBoyer 3.87 us 4.28 ps 5268 489 ( 9.28%) 4779 (90.72%)
RegExp 3.82 us 5.06 pus 6000 193 (1 3.22%) 5807 (96.78%)
Splay 4.63 us 5.04 us 5337 1187 (22.24%) 5150 (77.76%)
NavierStokes 4.67 ps 4.82 ps 1635 251 (15.35%) 1384 (84.65%)
TABLE II: Cache Coherency Overhead Under Different Scheduling Strategies.
Schedule 1  Schedule 2 Schedule 3 ~ Schedule 4  Schedule 5  Schedule 6
Richards 4.70 us 13.76 us 4.47 ps 14.25 pus 12.85 pus 13.37 pus
DeltaBlue 4.28 pus 13.29 us 431 ps 13.85 ps 14.09 ps 15.84 pus
Crypto 3.99 pus 1091 ps 3.98 s 14.07 ps 12.47 ps 13.48 us
RayTrace 3.98 us 14.99 us 4.05 ps 14.76 us 13.15 ps 12.35 ps
EarlyBoyer 3.87 us 13.70 ps 3.87 ps 14.27 ps 13.42 ps 13.47 ps
RegExp 3.82 us 14.64 us 3.85 us 14.48 pus 13.55 ps 12.32 ps
Splay 4.63 pus 12.92 ps 4.49 ps 13.22 us 13.36 ps 15.11 ps
NavierStokes 4.67 ps 12.06 us 447 ps 13.02 ps 14.80 ps 12.65 us
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Fig. 5: V8 Benchmark Slowdown (IA32). Fig. 6: V8 Benchmark Slowdown (x64).
Baseline SDCG (Pinned) SDCG (Free) Baseline SDCG (Pinned) SDCG (Free)
Richards 24913 (2.76%) 23990 (0.28%) 24803 (1.72%) Richards 25178 (3.39%) 24587 (2.31%) 25500 (3.24%)
DeltaBlue 25657 (3.31%) 24373 (0.43%) 25543 (3.86%) DeltaBlue 24324 (3.65%) 23542 (0.38%) 24385 (2.54%)
Crypto 20546 (1.61%) 19509 (1.27%) 19021 (1.95%) Crypto 21313 (3.16%) 20551 (0.26%) 20483 (2.57%)
RayTrace 45399 (0.38%) 42162 (0.75%) 43995 (6.46%) RayTrace 35298 (5.97%) 32972 (1.03%) 35878 (1.66%)
EarlyBoyer 37711 (0.61%) 34805 (0.27%) 34284 (0.82%) EarlyBoyer 32264 (4.42%) 30382 (0.61%) 30135 (1.04%)
RegExp 4802 (0.34%) 4251 (1.04%) 2451 (3.82%) RegExp 4853 (3.59%) 4366 (0.82%) 2456 (7.72%)
Splay 15391 (4.47%) 13643 (0.71%) 9259 (8.18%) Splay 13957 (6.02%) 12601 (2.92%) 7332 (9.85%)
NavierStokes 23377 (4.15%) 22586 (0.42%) 23518 (1.26%) NavierStokes 22646 (2.48%) 21844 (0.30%) 21468 (3.45%)
Score 21071 (0.72%) 19616 (0.35%) 17715 (1.86%) Score 19712 (3.57%) 18599 (0.62%) 16435 (1.03%)

TABLE IV: V8 Benchmark Results (IA32). The score is
the geometric mean over 10 executions of the benchmark
suite. Number in the parentheses is the standard deviation.

baseline result; the second column is the result of SDCG-
ported V8 with a pinned schedule; and the last column is the
result of SDCG-ported V8 with a free schedule. All results
are the geometric mean over 10 executions of the benchmark.
The number in the parentheses is the standard deviation as
a percentage. As we can see, the fluctuation is small, with
the baseline and a free schedule slightly higher than a pinned
schedule.

The corresponding slowdown is shown in Figure 5 (for
IA32 build) and Figure 6 (for x64 build). Overall, we did
not observe a significant difference between the IA32 build
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TABLE V: V8 Benchmark Slowdown (x64). The score is
the geometric mean over 10 executions of the benchmark
suite. Number in the parentheses is the standard deviation.

and the x64 build. For four benchmarks (Richards, DeltaBlue,
Crypto, and NavierStokes), the slowdown introduced by SDCG
is less than 5%, which is negligible because they are similar to
the standard deviation. The other four benchmarks (RayTrace,
EarlyBoyer, RegExp, and Splay) have higher overhead, but
with a pinned schedule, the slowdown is within 11%, which
is much smaller than previous SFI-based solutions [5] (79%
on TA32).

There are two major overhead sources. For RPC overhead,
we can see a clear trend that more RPC invocations (Table 1),
increase slowdown. However, the impact of cache coherency
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Fig. 4: SPEC CINT 2006 Slowdown. The baseline is the vanilla
Strata.

Native Strata SDCG (Pinned) SDCG (Free)
perlbench 364 559 574 558
bzip2 580 600 613 602
gce 310 403 420 410
mcf 438 450 479 471
gobmk 433 610 623 611
hmmer 797 777 790 777
sjeng 576 768 784 767
libquantum 460 463 511 474
h264ref 691 945 980 971
omnetpp 343 410 450 428
astar 514 546 587 563
xalancbmk 262 499 515 504
GEOMEAN 461 566 592 576

TABLE III: SPEC CINT 2006 Results. Since the standard
deviation is small (less than 1%), we omitted this information.

overhead caused by different scheduling strategies is not
consistent. For some benchmarks (Richards, DeltaBlu, and
RayTrace), free scheduling is faster than pinned scheduling.
For some benchmarks (Crypto and EarlyBoyer), overhead is
almost the same, but for two benchmarks (RegExp and Splay),
the overhead under free scheduling is much higher than pinned
scheduling. We believe this is because these two benchmarks
depend more heavily on data (memory) access. Note that,
unlike Strata, for SDCG-ported V8, we not only shared the
code cache, but also shared the heaps used to store JS objects,
for the ease of RPC implementation. Besides RPC frequency,
this is another reason why we observed a higher overhead
compared with SDCG-ported Strata.

VII. DISCUSSION

In this section, we discuss the limitations of this work and
potential future work.

A. Reliability of Race Condition

Although we only showed the feasibility of the attack in
one scenario, the dynamic translator can be invoked under
different situations, each of which has its own race condition
window. Some operations can be quick (e.g., patching), while
others may take longer. By carefully controlling how the
translator is invoked, we can extend the race condition window
and make such attacks more reliable.

In addition, OS scheduling can also affect the size of the
attack window. For example, as we have discussed in the
Section III, the invocation of mprotect is likely to cause
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the thread to be swapped out of the CPU, which will extend
the attack window.

B. RPC Stub Generation

To port a dynamic translator to SDCG, our current solution
is to manually rewrite the source code. Even though the
modification is relatively small compared to the translator’s
code size, the process still requires the developer to have
a good understanding of the internals of the translator. This
process can be improved or even automated through program
analysis. Firstly, our current RPC stub creation process is not
sound. That is, we relied on the test input. Thus, if a function
is not invoked during testing, or the given parameter does not
trigger the function to modify the code cache, then we miss
this function. Second, to reduce performance overhead and
the attack surface, we want to create stubs only for functions
that 1) are post-dominated by operations that modify the code
cache; and 2) dominate as many modification operations as
possible. Currently, this is done empirically. Through program
analysis, we could systematically and more precisely identify
these “key” functions. Finally, for the ease of development, our
prototype implementation uses shared memory to avoid deep
copy of objects when performing RPC. While this strategy
is convenient, it may introduce additional cache coherency
overhead. With the help of program analysis, we could replace
this strategy with object serialization, but only for data that is
accessed during RPC.

C. Performance Tuning

In our current prototype implementations, the SDTs were
not aware of our modification to their architectures. Since
their optimization strategy may not be ideal for SDCG, it is
possible to further reduce the overhead by making the SDT be
aware of our modification. First, one major source of SDCG’s
runtime overhead is RPC invocation, and the overhead can be
reduced if we reduce the frequency of code cache modification.
This can be accomplished in several ways. For instance, we
can increase the threshold to trigger code optimization, use
more aggressive speculative translation, separate the garbage
collection, etc.

Second, in our implementations, we used the domain
socket-based IPC channel from the seccomp-sandbox. This
means for each RPC invocation, we need to enter the kernel
twice; and both the request/return data need to be copied
to/from the kernel. While this approach is more secure (in the
sense that a sent request cannot be maliciously modified), if the
request is always untrusted, then using a faster communication
channel (e.g., ring buffer) could further reduce the overhead.

Third, we used the same service model as seccomp-
sandbox in our prototypes. That is, RPC requests are served by
a single thread in the SDT process. This strategy is sufficient
for SDTs where different threads share the same code cache
(e.g., Strata) since modifications need to be serialized anyway
to prevent a data race condition. However, this service model
can become a bottleneck when the SDT uses different code
caches for different thread (e.g., JS engines). For such SDTs,
we need to create dedicated service threads in the SDT process
to serve different threads in the untrusted process.



In addition, our current prototype implementations of
SDCG are not hardware-aware. Different processors can have
different shared cache architectures and cache management ca-
pabilities, which in turn affects cache synchronization between
different threads. Specifically, on a multi-processor system,
two cores may or may not share the same cache. As we
have demonstrated, if the translator thread and the execution
thread are scheduled to two cores with different cache, then the
performance is much worse than when they are scheduled to
cores with the same cache. To further reduce the overhead, we
can assign processor affinity according to hardware features.

VIII. CONCLUSION

In this paper, we highlighted that a code cache injection
attack is a viable exploit technique that can bypass many state-
of-art defense mechanisms. To defeat this threat, we proposed
SDCG, a new architecture that enforces mandatory WoX
policy. To demonstrate the feasibility and benefit of SDCG,
we ported two software dynamic translators, Google V8 and
Strata, to this new architecture. Our development experience
showed that SDCG is easy to adopt and our performance
evaluation showed the performance overhead is small.
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