
DRAMD: Detect Advanced DRAM-based Stealthy
Communication Channels with Neural Networks

Zhiyuan Lv ∗‡, Youjian Zhao ∗‡, Chao Zhang †‡§, Haibin Li ∗‡
∗Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
†Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China

‡Beijing National Research Center for Information Science and Technology(BNRist), Beijing 100084, China

Abstract—Shared resources facilitate stealthy communication
channels, including side channels and covert channels, which
greatly endanger the information security, even in cloud envi-
ronments. As a commonly shared resource, DRAM memory also
serves as a source of stealthy channels. Existing solutions rely
on two common features of DRAM-based channels, i.e., high
cache miss and high bank locality, to detect the existence of such
channels. However, such solutions could be defeated.

In this paper, we point out the weakness of existing detec-
tion solutions by demonstrating a new advanced DRAM-based
channel, which utilizes the hardware Intel SGX to conceal cache
miss and bank locality. Further, we propose a novel neural
network based solution DRAMD to detect such advanced stealthy
channels. DRAMD uses hardware performance counters to track
not only cache miss events that are used by existing solutions,
but also counts of branches and instructions executed, as well as
branch misses. Then DRAMD utilizes neural networks to model
the access patterns of different applications and therefore detects
potential stealthy communication channels. Our evaluation shows
that DRAMD achieves up to 99% precision with 100% recall.
Furthermore, DRAMD introduces less than 5% performance
overheads and negligible impacts on legacy applications.

Index Terms—side channel, covert channel, SGX, neural net-
work, countermeasures, DRAM

I. INTRODUCTION

DRAM-based side channel and covert channel attacks re-
cently have attracted increasing attentions [1]. Since DRAM
is shared by multiple cores and processors, DRAM-based side
and covert channels can work across processors. Therefore,
comparing with recent popular cache-based side channel [2]
and covert channel [3] attacks, DRAM-based attacks pose
more severe threats [4]. Although many countermeasures have
been proposed to counter cache-based attacks [5]–[10], there
are only a few straightforward methods to detect DRAM
attacks [1], [4].

DRAM attack and detection. DRAM side and covert channel
attacks [1] can break the security guarantee posed on informa-
tion flow. Specifically, DRAM side channels can infer secret
information processed by a victim application by measuring
its DRAM usage patterns. DRAM covert channels enable
covert communications between two cooperating entities. To
measure the sender’s/victim’s DRAM usage, the attacker has
to flush the cache to evict the memory being measured.
Therefore, existing DRAM attack techniques in general have

§Chao Zhang is the corresponding author.

high cache misses. Moreover, DRAM attacks also have a high
bank locality. Attackers need to perform repeated access of a
few target DRAM banks, while regular programs will access
many banks due to Intel’s well-designed DRAM addressing
algorithm [11]. Therefore, some studies have proposed using
those two features to detect DRAM attacks [1], [4], [12].

Advanced DRAM attacks. However, existing detection so-
lutions relying on the cache miss and bank locality features
could be defeated, by concealing such features with certain
mechanisms. In this paper, we demonstrate an advanced
DRAM attack to defeat existing detection solutions by uti-
lizing Intel Software Guard eXtensions (SGX) to conceal
these two features. SGX is an x86 instruction set extension
used to securely and confidentially run programs in isolated
environments (i.e., enclaves) on systems potentially controlled
by adversaries. Hence, cache misses and memory access in
enclaves cannot be measured even by operating system (OS)
[13], rendering existing detection solutions ineffective. Further,
we also present another variant of attack, i.e., one-row DRAM
attack which accesses only one DRAM row, able to further
promote the success rate of the proposed SGX-based channel.

Challenges. To detect DRAM-based channels, especially the
advanced attacks presented in this paper, there are several
challenges that need to be addressed: (1) Detecting activities
inside SGX. The SGX enclave is an isolated environment
that cannot be accessed even by the OS. Therefore, providing
an approach that can detect malicious activities inside SGX
is challenging. (2) Detecting covert channels. Unlike side
channels in which senders are victims, senders in covert
channels are cooperative attackers, which do not cooperate
with the defenders. Therefore, developing an approach that can
detect both side and covert channel attacks without cooperation
from the sender is challenging as well. Few work have focused
on this issue. (3) Compatibility and universality. Since the
target hardware, OS and software vary widely, providing a
solution that can simultaneously protect both vulnerable legacy
systems and future systems is a formidable challenge.

Our solution. In this paper, we present a lightweight and
general software solution DRAMD to detect both traditional
DRAM-based channels and the advanced SGX-based DRAM
channels, including both side and covert channels. First, to
detect activities in SGX, we propose a novel neural network
based solution, which utilizes several hardware performance

counters to classify different applications behaviors including
stealthy channels. Although SGX shields its internal applica-
tions from these performance counters, it has to inter-operate
with the OS to accomplish tasks. For example, the SGX
application will be scheduled by the OS’s process scheduler.
Moreover, different applications (no matter inside or outside
SGX enclaves) present different performance counter patterns.
As a result, DRAMD is able to recognize SGX activities by
monitoring the OS’s performance counters. Second, DRAMD
uses the host machine’s hardware features for detection, with-
out requiring the cooperation of the senders/applications. So
it is able to detect both side and covert channels. Third,
we design DRAMD as a lightweight software-only extension
to the Linux kernel, which does not require new hardware
support or OS modifications and can be deployed immediately,
providing a good compatibility and universality.

In summary, this paper makes the following contributions.

• We point out the limitations of existing detection schemes
and demonstrate an advanced attack that can bypass them.
Specifically, our SGX-based attack does not have obvious
abnormal features and cannot be monitored, even by
OS kernel. The one-row DRAM attack variant further
improves the success rate of the attack.

• We propose the first neural network based solution that
can detect the internal behavior of SGX applications, and
analyze the root causes.

• We present the first software-only system DRAMD, able
to detect not only DRAM-based side channel attacks but
also DRAM-based covert channel attacks. It introduces
no changes to the hardware, OS or applications, and can
be implemented in modern systems with few efforts.

• We present the full prototype implementation and exten-
sive evaluation of the proposed approach. The evaluation
result shows our solution is very effective.

II. BACKGROUND

A. DRAM Organization

Modern DRAM is organized in a hierarchy of channels,
DIMMs, ranks, and banks. Banks contain the actual memory
arrays, which are organized into rows and columns.

The row buffer. Apart from the memory array, each bank
also features a row buffer between the DRAM cells and the
memory bus. From a high-level perspective, the row buffer
behaves similarly to a directly mapped cache and stores an
entire DRAM row. Requests to addresses in the currently
active row are served directly from this buffer. If a different
row needs to be accessed, then the currently active row is
first closed (with a pre-charge command), then the new row
is fetched (with a row-activate command) to the row buffer
and served, and then this row becomes active. We call such
an event a row conflict. Obviously, such a conflict leads to
significantly higher access time compared to requests to the
active row.

Side channel Covert channel

if(secret)

access (v)

while(1) do

access (aa)

busy loop

time access to (a)

end

seq:101010

if(bit == 1)

access (s)
else

idle

while(1) do

access (r)

busy loop

time access to (r)

end

victim

Core 1

attacker

Core 2

sender

Core 3

receiver

Core 4

LLC

DRAM

Row buffer

sender (s) sender (s) sender (s) sender (s)

receiver (r) receiver (r) receiver (r) receiver (r)

victim (v) attacker (a)

attacker (aa)

Fig. 1. DRAM-based side and covert channel attacks.

B. DRAM-based Attacks

DRAM attacks exploit the physical architecture of modern
DRAMs, in which each bank has a shared row buffer, even in
multi-processor systems. While accesses to this buffer are fast,
accesses to other memory rows in DRAM are much slower.
This timing difference can be exploited to launch side and
covert channels between two host applications. Fig. 1 shows
an example of DRAM-based side and covert channel attacks.

DRAM side channel: As shown on the left side of Fig. 1,
the victim process behaves differently based on the secret
value. In order to leak the secret value (i.e., side channel),
attackers will try to guess whether the victim memory has been
accessed. To learn whether the victim process has accessed a
virtual address (v), the adversary allocates two memory blocks
(a) and (aa) that reside the same DRAM bank as (v). Further,
the adversary makes (a) maps to the same row as (v), while
(aa) does not. The adversary will perform a probing loop
as follows: it first accesses the memory (aa), then waits for
the victim action, and then measures the time of accessing
memory (a).

When the secret value is 1, the memory (v) will be accessed,
and the access time of (a) will be low since they share a same
row which has been fetched to the row buffer. When the secret
value is 0, the memory (v) will not be accessed during the
probing period, and the access time of (a) will be high. As a
result, the adversary could infer the secret of the victim.

DRAM covert channel: As shown on the right side of
Fig. 1, the sender and the receiver occupy different rows in
the same bank with the physical memory of (s) and (r). The
sender will cooperatively send the secret to the receiver. When
the secret to transmit is 1, it will access the memory (s),
causing the receiver’s time measurement high. Otherwise, it
will suspend accessing the memory, causing the receiver’s time
measurement low. In this way, the sender could reliably send
the secret to the receiver in a covert way.

C. Intel SGX

SGX is a new set of x86 instructions introduced in the
Skylake micro-architecture. SGX protects the execution of
user programs by putting them in so-called enclaves. Only
the application inside the enclave can access its own memory

region, and any other accesses to the enclave internal is
blocked by the CPU or by the encryption imposed on the
enclave data. Furthermore, not only the OS but also the
hardware (including performance counters) cannot access or
leak any information from the SGX enclaves1.

Since SGX enforces this policy in hardware, enclaves do not
need to rely on the security of the OS, the hardware, and even
the cloud administrator. By performing sensitive computations
(e.g., encryption) inside an enclave, one can effectively protect
the application from traditional threats (e.g., malware), even
if such malware has obtained kernel privileges. As a result,
SGX provides a trusted execution environment and becomes
widely adopted by cloud platforms, to provide stronger trust
guarantee for users.

However, SGX could also be abused by attackers, e.g., to
facilitate DRAM side and covert channel attacks, as shown in
this paper.

D. Modeling DRAM Stealthy Channels

In this subsection, we analyze the capacity of DRAM-based
channels via information theory, proving that DRAM attacks
must cause many cache misses.

1) Transmission Error Rate: Given a communication chan-
nel, the receiver may get a wrong value, i.e., different from
the value sent by the cooperative sender or unwilling victim,
due to communication noises.

In DRAM-based channels, there are also non-negligible
noises causing transmission error. Hence, we assume the error
rates in DRAM-base channels are ξ and µ when transmitting
0 and 1 respectively, as shown in Fig. 2.

Fig. 2. DRAM side and covert channel attacks.

2) Channel Capacity: We denote the value sent by the
sender as X and the value received by the receiver as Y.

Assume the probability of X as follows:

p(x0) = p(X = 0) = p.

p(x1) = p(X = 1) = 1− p.

We can calculate the probability of Y as follows:

p(y0) = p(Y = 0) = p(x0) · (1− ξ) + p(x1) · µ
= p · (1− ξ) + (1− p) · µ

p(y1) = p(Y = 1) = p(x0) · ξ + p(x1) · (1− µ)

= p · ξ + (1− p) · (1− µ)

Following Shannon’s theorem [14], the entropy of Y is:

H(Y) = −
∑
j

p(yj) · log
p(yj)
2

1Except for SGX side channels, e.g., the one discussed in our paper.

The conditional entropy of (Y |X) is as follows:

H(Y |X) = −
∑
i,j

p(xi) · p(yj |xi) · log
p(yj |xi)
2

= −{p · (1− ξ) · log1−ξ
2 +p · ξ · logξ2

+ (1− p) · µ · logµ2 +(1− p) · (1− µ) · log1−µ
2 }

Therefore, the mutual information of (X,Y) is as follows:
I(Y |X) = H(Y)−H(Y |X)

Further, the channel capacity is as follows:
C = max

p
I(Y |X) (1)

We could infer that, when the error rates ξ and µ reach
0.5, the channel capacity becomes 0, i.e., no information can
be reliably transmitted. When the error rates reach 0, the
channel capacity could reach its maximum value. In practice,
the communication parties will try to reduce the error rates.

3) Error Rate Calculation: In previous studies, covert
channels have been commonly modeled as binary symmetric
channels (BSC) [15]. In other words, the error rates of wrongly
transmitting 0 and 1 in the channel are equal. However, these
two error rates in DRAM-based channels are different.

Error rate ξ in covert channels (sending 0 but reading
1). As shown in Fig. 1, in a covert channel, the receiver
will repeatedly probe a row being monitored and measure
the access time. To transmit a bit 0, the sender will suspend
affecting the shared row buffer in the DRAM bank. The
receiver will read a 0 since the estimated access time is low.

However, if someone else accesses a row (different from the
row being monitored) in this DRAM bank during the probing
period, the shared row buffer will become dirty. As a result,
the receiver will read a 1 since the estimated access time is
high, i.e., a transmission error.

Assuming the receiver’s probing time interval is ∆t, and the
probability of the DRAM bank being accessed in each unit of
time is qt1 , qt2 , ..., qt∆t

, and the number of rows in the bank
is N (N ≥ 214 for almost all DRAMs). Then, the error rate
ξ, i.e., the probability that someone accesses the shared row
buffer during the time interval ∆t, is as follows:

ξ(∆t) =
N − 1

N
(1−

∆t∏
i=1

(1− qti))

≈ 1− (1− qt)∆t.

where qt represents the distribution of qt1 , ..., qt∆t
. So, the

error rate ξ rapidly increases with the time interval ∆t.
Error rate µ in covert channels (sending 1 but reading 0).

Similarly, we could infer that, if someone else access the same
row as the one being monitored during the probing period, the
receiver will wrongly get a bit 0 when a bit 1 is sent.

Then, the error rate µ, i.e., the probability that someone
accesses the same row during the probing period, is as follows:

µ(∆t) =
1

N
(1−

∆t∏
i=1

(1− qti))

≈ 1

N
(1− (1− qt)∆t) ≈ 0.

So, µ is always maintained at approximately 0. Therefore, the
channel capacity C approaches to 0 along with the increase
of the time interval ∆t.

Error rates in side channels. Similarly, we could infer that,
(1) the error rate ξ in side channels equals to the error rate
µ in covert channel, and (2) the error rate µ in side channels
equals to the error rate ξ in covert channel. The error rates
also rapidly increase with the probing time interval.

4) High Cache Misses of DRAM-based Channels: Since the
DRAM-based channels’ error rates increase rapidly with the
probing time interval, so in practice the attackers will reduce
the probing time interval ∆t to reduce transmission errors.
However, the DRAM probing process has to evict the cache
and causes cache miss, in order to measure the DRAM access
time in each probing period. So, a shorter probing period will
yield higher cache misses.

In our experiments, we notice that attackers cannot reliably
obtain any useful information if the probing time interval ∆t
is greater than 1k CPU cycles. So, in practice, the probing
time interval will be lower than 1K CPU cycles. Therefore,
assuming the CPU frequency is at least 800 MHz, this attack
will cause at least 800k cache misses in a second. Existing
solutions could utilize this high cache miss feature to detect
such channels.

III. EXISTING SOLUTION AND DRAWBACKS

A. Existing Detection Techniques

Existing detection techniques [1], [4], [12] rely on two
common features of DRAM-based channels, i.e., high cache
miss and high bank locality, to detect the existence of such
channels.

1) High cache miss feature: As show in Sec. II-D, suc-
cessful DRAM attack relies on repetitively accessing a few
aggressor DRAM rows within a short time. Existing detec-
tion techniques make the observation that this fundamentally
requires accesses to the aggressor rows to miss on all cache
levels. This reveals two identifying characteristics of DRAM
attack: high cache miss rate and high spatial locality of DRAM
row accesses. This is in contrast to general memory access
patterns where high locality results in high cache hit rates.
As such it is straightforward to discriminate between DRAM
attacks and non-malicious programs by looking at DRAM
access patterns and rate.

2) High bank locality feature: Another property of DRAM
attacks is high bank locality. A DRAM usually contains many
banks, e.g., a DDR4 DRAM is composed of 32 banks [1].
In DRAM attacks, attackers need to repeatedly access only a
few target DRAM banks, while non-malicious programs will
access many banks due to Intel’s well-designed DRAM ad-
dressing algorithm [11]. Therefore, this bank locality property
can be used to discriminate between DRAM attacks and non-
malicious programs.

B. Breaking Current Detection Techniques

In this subsection, we show that these techniques are in-
sufficient to guarantee protection from DRAM attacks. First,

we show an SGX-based DRAM attack abusing the SGX
protection features to conceal both high cache miss and high
bank locality features. Second, we present a one-row DRAM
attack, a new type of DRAM attack, to further relax certain
attack conditions.

1) SGX-based attacks: SGX runs in a secure, trusted envi-
ronment with hardware isolation, where even the OS cannot
access its memory. According to Intel, SGX enclave activity is
not visible in the thread-specific performance counters [4] [16].
Therefore, SGX-based attacks can conceal both high cache
miss and high bank locality features, and hence defeat existing
detection approaches.

Successful SGX-based DRAM attacks require two primi-
tives: a high-resolution timer to distinguish row buffer hits and
misses, and a method to generate a set of addresses that map to
target DRAM rows. For the high-resolution timer, on SGX2
[13], rdtsc is available within enclaves. On SGX1 [13], [4]
demonstrated that accurate timing can be obtained by using
counting threads, and [17] mirrored rdtsc into the enclave.
Our experiments with both approaches show that we can use
either technique to obtain sufficiently accurate timing inside
the enclaves. Therefore, we focus on the method of generating
the address sets. As shown in Fig. 3, enclaves occupy a piece
of reserved DRAM, EPC, that does not share a bank with
other DRAM. To launch DRAM attacks on all DRAM banks,
we generate two address sets: one application address set
mapping to all no-EPC banks using a traditional technique
[1] and one enclave address set mapping to all EPC banks
using the methods in [4]. According to [13], an enclave can
access addresses out of EPC but in the same application, and
we have verified that the access possesses the same hidden
features as accesses to EPC addresses.

Fig. 3. An enclave’s address map [13].

2) One-row attacks: As we have shown, existing DRAM
side channel attacks need to allocate at least two memory
blocks that map to the same DRAM bank, with one sharing
the same DRAM row with a victim address and the other
mapped to a different row on the same bank. To further relax
the attack conditions, we introduce a new attack primitive,
denoted as one-row DRAM attack. Modern systems employ
sophisticated memory controller policies, preemptively closing
rows earlier than necessary to optimize performance [18]–[20].
We conjecture that this policy creates a previously unknown
DRAM effect, which we exploit with a one-row DRAM attack.

As shown in Fig. 4, with a one-row DRAM attack, the
attacker simply runs a Flush+Reload loop on a single memory
address (a). This will continuously reopen the same DRAM
row, whenever the memory controller closes the row. If the
victim address (v) is not accessed, the attacker always has a
row buffer miss with a longer access time, while the victim
address (v) is accessed, the attacker will obtain a row buffer hit
with a shorter access time. Therefore, a one-row DRAM side
channel attack is successful. In addition, a one-row DRAM
covert channel attack can also be successful using a similar
method.

One-row side channel One-row covert channel

if(secret)

access (v)

while(1) do

access (a)

busy loop

time access to (a)

end

seq:101010

if(bit == 1)

access (s)
else

idle

while(1) do

access (r)

busy loop

time access to (r)

end

victim

Core 1

attacker

Core 2

sender

Core 3

receiver

Core 4

LLC

DRAM

Row buffer

sender (s) receiver (r)

victim (v) attacker (a)

Fig. 4. A one-row DRAM attacker only needs one address sharing the same
DRAM row with a victim (sender) address

3) Attack Implementations: To fully demonstrate the attack
effect, we implemented four types of DRAM attacks: a tradi-
tional multi-row non-SGX attack, a one-row non-SGX attack,
a multi-row SGX-based attack and a one-row SGX-based
attack. For each type of attack, we implemented DRAM side
and covert channel attacks. We implemented the attacks on an
Ubuntu-based server with two Intel core i7-9700k processor
(Coffee Lake) with an 8 GB DDR4 DRAM modules.

Table I shows the performances of the four types of DRAM
attacks. We use the attack accuracy (i.e., successfully transmit-
ting the secret value) of 1000 accesses to a victim address to
measure side channel attacks, and use the channel capacity to
measure covert channel attacks. As shown in the table, our
SGX-based attack achieves similar attack performances to ex-
isting non-SGX attacks, but is harder to be detected. Although
the attack performance of the one-row attack is slightly worse
than traditional multi-row attacks, it still presents a severe
threat.

TABLE I
DRAM ATTACK EFFECT OF FOUR TYPES OF DRAM ATTACKS.

Attack technique Side channel Covert channel Stealthy(Accuracy) (Capacity)
Multi-row without SGX 81% 40 kbps ×
One-row without SGX 72% 12 kbps ×
Multi-row with SGX 79% 40 kbps X
One-row with SGX 71% 13 kbps X

IV. OUR SOLUTION DRAMD

In this section, we present a software-based solution
DRAMD, to detect both traditional DRAM side and covert
channel attacks and the advanced SGX-based DRAM attacks.

DRAMD monitors several hardware performance counters,
learns different applications’ patterns, and builds a Convo-
lutional Neural Network (CNN) to detect stealthy channels
in SGX. Although the hardware performance counters cannot
reveal anything inside SGX, our solution still works since SGX
relies on the OS and unwillingly leaks information.

In this section, we first discuss how the information in
SGX leaks to the OS, then presents how DRAMD monitors
applications for detecting attacks at runtime, and then presents
the detail design of our neural network based detection method
used to detect SGX-based DRAM attacks.

A. Information Leak in SGX

Although the OS and the hardware (including performance
counters) cannot directly reveal information of SGX, we figure
out SGX still indirectly leaks information to the OS.

1) SGX process scheduling: In modern multitasking pro-
cessors, multiple processes often need to share time slices of
the same CPU core, which requires the OS to schedule these
processes [21]. Linux process scheduling is based on the time
sharing and process preemption technique, in which the CPU
time is divided into slices, one for each runnable process. If
a currently running process is not terminated when its time
slice expires, or a process with a higher dynamic priority is
ready, a process switch may occur. Linux process scheduling
relies on timer interrupts without the help of processes being
scheduled. No additional code need to be inserted into the
programs/processes to perform process scheduling [22], [23].

However, SGX-enabled processors use the same process
scheduling policy as normal processors, and the SGX process
is still scheduled by the OS [13]. This is the root cause of
SGX information leakage discussed in this paper.

2) Leaking via Process Scheduling: During process
scheduling, the core running the SGX processes needs to
interact with the OS with some necessary information, which
eventually reveals actions inside the SGX. More specifically,
the running core needs to periodically report the status infor-
mation necessary for process scheduling to the OS. These sta-
tus information are actually depending on the core’s operations
(i.e., the SGX application code). So, we could retrieve certain
information by analyzing the status information. Specifically,
when sending and receiving process scheduling information
to and from the OS, CPU cores running different SGX
applications have different visible interaction patterns, which
can be used to identify actions inside the SGX.

3) Example: As shown in Fig. 5, three groups of operations
within SGX, e.g., no memory access, memory access with
cache hit and memory access with cache miss, cause different
times of invocations to the system function update curr(),
making them detectable. In the Linux scheduling strategy, the
periodic scheduler is started periodically during the execution
of a process, and invokes update curr() function to update

some related data. Since memory access with cache hit is
faster than memory access with cache miss, the former will
release the CPU more frequently than the latter, causing more
invocations to update curr(). In this way, we could infer
certain information of the SGX application internals.

no memory access cache hit cache miss
0

2000

4000

6000

Fig. 5. The number of accesses to the update curr() function in 30 seconds
for three SGX with different operations: no memory access, memory access
with cache hit and memory access with cache miss.

B. Overview

Fig. 6. Architecture overview of DRAMD.

Fig. 6 shows the architecture of DRAMD and the workflow
for detecting DRAM attacks. For completeness, we designed
DRAMD to detect both traditional non-SGX DRAM attacks
and SGX-based DRAM attacks. The only features used by
DRAMD are hardware event values read from the hardware
performance counters available in commercial processors.

We implement DRAMD as a group of services in the host
OS kernel. DRAMD consists of two modules, each running
on a dedicated core. The Attacker Monitor is responsible for
collecting cache activities of non-SGX apps, therein using the
high cache miss feature to detect traditional DRAM attacks,
and collecting another 4 runtime events of SGX applications:
cache misses (the number of cache misses), branches (the
number of branches executed), instructions (the number of
instructions executed) and branch misses (the number of
branch prediction failures). These 4 runtime events will be fed
to the CNN Detector to learn and detect SGX-based DRAM
attacks using our neural network based classifier.

C. Performance Events Monitoring

At runtime, DRAMD keeps monitoring both non-SGX
and SGX applications using hardware performance counters.

Specifically, DRAMD monitors all non-SGX applications run-
ning on a server to detect non-SGX DRAM attacks using
the high cache miss feature. Meanwhile, DRAMD monitors
all SGX applications running on the server to collect their
interaction patterns with the OS, and uses a neural network
based method to detect SGX-based DRAM attacks.

Fig. 6 shows the workflow of DRAMD. Details of each step
are described as follows:

Step 1: Monitoring cache activities of non-SGX apps.
This step occurs at runtime. The Attacker Monitor exploits
the performance counters to monitor all non-SGX apps si-
multaneously. The Attacker Monitor determines whether it is
a non-SGX app by checking whether the CPU is in enclave
mode. One challenge is that there are no enough performance
counters available on the servers to monitor all non-SGX
applications, since most Intel and AMD processors support
up to six counters, and the number of counters does not scale
with the number of cores. Thus, when there are many non-
SGX apps on the server, the Attacker Monitor cannot monitor
them concurrently.

To solve this problem, we use a time-domain multiplexing
method: the Attacker Monitor identifies active CPU that runs
non-SGX apps and then measures each of them in turn. If one
CPU has a high cache miss, the Attacker Monitor will flag an
alarm.

Step 2: Monitoring 4 runtime events of SGX apps. This
step occurs concurrently with Step 1. The Attacker Monitor
exploits performance counters to monitor all SGX apps si-
multaneously. It periodically (e.g., every 1 ms) records the
4 event counts (cache misses, branches executed, instructions
executed and branch misses) which will be fed to the CNN
Detector.

The Attacker Monitor still determines whether it is an SGX
app by checking whether the CPU is in enclave mode. In
addition, we also use the time-domain multiplexing method in
Step 1 to solve the challenge of insufficiency of performance
counters available on the server to monitor many SGX apps.

Step 3: Detecting SGX-based DRAM attacks. This step
occurs at runtime. The CNN Detector periodically receives the
4 event counts and regards each 1000 events as one sample
(the effect of the number of events in a single sample on the
detection effect will be evaluated in the evaluation section). It
continues detecting the most recent data sample, and will flag
an alarm if an attack is detected.

D. Neural Network based Detection

DRAMD uses a neural network classifier to detect SGX-
based attacks. Features and classifiers directly determine the
detection effect of neural networks, hence we need to select
a proper hardware performance feature and design a suitable
neural network classifier.

1) Feature Selection: We choose 4 hardware events (cache
misses, branches executed, instructions executed and branch
misses) as the final features. This is because the interaction
patterns with OS, used for attack detection are characterized

by the cache miss count, the branch executed count, the in-
struction executed count and the branch miss count, measured
by the performance counters.

As shown in the previous subsection, there are hundreds of
functions in the OS that are responsible for process scheduling,
and SGX actions can be identified by the number distribution
of OS process scheduling functions invoked when the SGX
application is being scheduled. However, we have no way to
record the number of OS process scheduling functions invoked
by a certain SGX. Fortunately, DRAMD only needs to know
the relative number of invokes to these functions, which can
be inferred by the number of cache misses, branches executed,
instructions executed or branch misses. These events will be
generated when these OS functions are executing, and be
recorded in the hardware performance counters. To improve
the detection accuracy, we combined all these 4 hardware
events for the neural network to make decisions.

2) CNN Classifier: We choose CNN as the final classifier.
CNN is a branch of machine learning, which has been proved
very effective for signal recognition tasks such as speech
transcription, image segmentation, image classification, and
many others [24]. CNNs are good at capturing high-level
concepts that are easy for humans to agree on but hard
to express formally. In our case, we use CNNs to capture
interaction patterns of SGX process and OS for a given SGX
action, even in the presence of some variations among these
actions.

Fig. 7. Our CNN architecture. The input has 4 layers denoting the 4 hardware
events (cache misses, branches executed, instructions executed and branch
misses). k×n denotes the number of OS process scheduling functions, which
is 864 in our CNN classifier.

We use CNNs with two convolution layers, one max pooling
layer, and one dense layer (Fig. 7). We train them using an
Adam [25] optimizer on batches of 64 samples, with the
categorical cross-entropy as the error function. The classifier
is constructed using TensorFlow with the Keras front end.
The CNN input is the number distribution of 1000 hardware
events in OS process scheduling functions, and each 1000
events is regarded as one sample. The CNN output indicates
whether a sample is a DRAM attack. We use supervised
training on a corpus that consists of DRAM attacks and some
normal actions, labeled with their correct class. The selection
of normal actions and the generation of labeled training data
will be discussed in Sec. V.

V. EVALUATION

In this section, we evaluate the security and performance of
DRAMD to validate its design and implementation.

A. Setup

We use a Coffee Lake server with a 3.6-GHz Intel Core
i7-9700k CPU. The processor contains 8 physical cores (hy-
perthreading is not supported) sharing a 12-MB LLC. Each
core has a 32-KB L1 data and instruction cache, and a 256-
KB L2 unified cache. The server is equipped with two 8 GB
DDR4-2400 DIMMs. We used the latest official Intel SGX
lib (Version 2.6), driver (Version 2.5) and SDK (Version 2.6)
[26].

We implemented DRAMD as a kernel service with ∼2000
lines of code in the Linux kernel 4.15.0-39-generic running
Ubuntu 16.04.3 TLS.

B. Security Evaluation

1) Classification Accuacy of SGX Application Behaviors:
We first show that our CNN classifier can accurately identify
different actions in SGX. As shown in Sec. IV, we used 4
hardware events (cache misses, branches executed, instructions
executed and branch misses) as the feature. We use the SGX-
based DRAM attack (action with high cache miss), including
multi-row attack and one-row attack, and 7 common normal
actions as classification targets: normal memory access (action
with high cache hit), RSA, ECC, AES, DES, MD5 and
SHA512 actions.

Dataset. To collect the dataset, an SGX occupying a
dedicated core performs a target action and the DRAMD
occupying another dedicated core records the 4 hardware
events. Since our classifier essentially takes advantage of the
statistics of these events, a sample should contain enough
events to cover most OS process scheduling functions. We
explored the effect of changing the number of events in a
single sample on the detection accuracy. We chose three types
of samples with different numbers of events, i.e., 500, 1000
and 2000 events, and generated all datasets three times.

a) Training dataset: We first generated training data for
each action in SGX. An SGX continues running an action
until the DRAMD collects enough samples. We collected 1000
training samples for each target action in SGX.

b) Test dataset: We used the same method to collect the
test data, and we collected 500 test samples for each target
action in SGX.

Result. We consider the identification of an action in SGX
as a multi-classification and measure its confusion matrix.
Fig. 8 shows the results of 8 trained classes under three types
of samples with different numbers of events. From this figure,
we can see that 1000 events and 2000 events give better
accuracy than 500 events: our classifier can achieve more
than 94% accuracy for all classes, and there are very few
false positives. For 500 events, normal memory access, RSA,
ECC and AES actions can be identified with high accuracy,
whereas other actions cannot be differentiated from each other
with reasonable false positive and false negative rates. This is

because the 500 events cannot capture sufficient information
to cover most OS process scheduling functions.

The optimal number of events in a sample depends on
how an SGX core invokes OS process scheduling functions.
If the sampling time for a single sample (the time required
to collect a certain number of events) is much longer than
the time for invoking most functions, the sample will contain
more data points, thus yielding more accurate results. In our
experiments, a sample with 1000 events (taking approximately
5 s to collect), the default setting in DRAMD, can cover most
OS process scheduling functions, providing good results for
all eight classes.

(a) The sample of 500 events (b) The sample of 1000 events

(c) The sample of 2000 events
Fig. 8. Confusion matrix of 8 target actions. 0:DRAM attack, 1:normal
memory access, 2:RSA, 3:ECC, 4:AES, 5:DES, 6:MD5, 7:SHA512.

2) SGX-based DRAM Attack Detection Accuracy: Since the
detection accuracy of traditional non-SGX DRAM attacks has
been demonstrated in [12], we only measure the detection
accuracy of SGX-based DRAM attacks using the 4 hardware
events as the feature.

We considered the detection of an SGX-based DRAM attack
as a binary classification, and we measured its true positive
rate and false positive rate in addition to the precision and
recall. We used the same 8 target actions in SGX as in the
previous subsection. DRAMD first generates training data for
the SGX-based DRAM attack and normal actions (the other
7 actions). We use the same method to generate a training
dataset to train our classifier except that here we regard actions
other than DRAM attacks as the “normal action” class. In
the detection phase, an SGX occupying a dedicated core runs
all types of DRAM attacks (side and covert channels, and
multi-row attacks and one-row attacks). 4 SGX occupying 4
other dedicated cores randomly run normal actions, including
untrained actions. Meanwhile DRAMD occupying another

dedicated core detects the attacks. We repeated the experiment
100 times and measured the number of true positives and false
positives under different thresholds. We plot the receiver op-
erating characteristic (ROC) and precision-recall (PR) curves
to show the relations between the true positive rate and false
positive rate, and those between the precision and recall.

We also tested the three types of samples with different
numbers of events. Fig. 9 shows the results of detecting SGX-
based DRAM attacks under the three types of samples. From
this figure, we can see that 1000 events and 2000 events give
better accuracy than 500 events: DRAMD can achieve a true
positive rate close to 100 % with a zero false positive rate. For
500 events, the attacks cannot be differentiated from normal
actions with reasonable false positive and false negative rates.
This further validates the conclusions in our previous section.

(a) ROC (b) PR
Fig. 9. PR and ROC curves of SGX-based DRAM attack detection.

C. Performance Evaluation

Our intent was to test the performance penalty to the host
due to DRAMD with the default settings in a high-load system.
We used 20 SPEC CPU 2017 benchmarks (the full SPEC
2017) [27] and 13 PARSEC benchmarks (the full PARSEC)
[28] for a performance evaluation. We launched 8 dockers on
the machine, which acted as real applications, each using one
of eight cloud applications from CloudSuite [29] (data ana-
lytics, data caching, data serving, graph analytics, in-memory
analytics, media streaming, web searching and web serving).
We show the normalized run time for each benchmark in
Fig. 10 (the results averaged over 10 runs). Note that most
benchmarks are unaffected (with results of approximately 1).
Some benchmarks are affected, therein becoming slower (with
results greater than 1). In summary, the results suggest that
DRAMD has little impact on the performance of benign
applications; and even in the worst case, the performance
overhead is less than 5%.

VI. RELATED WORK

A. Hardware Side and Covert Channels

Attacks exploiting hardware sharing can be grouped into
two categories. In side channel attacks, an attacker spies on a
victim and extracts sensitive information such as cryptographic
keys [30], [31]. In covert channel attacks, the sender and
receiver bypass conventional security mechanisms, allowing
unmonitored communications between two unconcerned enti-
ties [32], [33].

pe
rlb

en
ch gc
c

m
cf

om
ne

tp
p

xa
la

nc
bm

k
x2

64
de

ep
sje

ng
le

el
a

ex
ch

an
ge

2 xz
bw

av
es

ca
ct

uB
SS

N
lb

m wr
f

ca
m

4
po

p2
im

ag
ick na

b
fo

to
ni

k3
d

ro
m

s

SPEC

0.90

0.95

1.00

1.05

1.10

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

bl
a.

bo
d.

ca
n.

de
d.

fa
c. fe
r.

flu
.

fre
.

ra
y. st
r.

sw
a.

vi
ps

x2
64

PARSEC

0.90

0.95

1.00

1.05

1.10

Fig. 10. Performance of different benchmarks. The x-axis shows the benchmarks, and the y-axis shows the normalized run time of each benchmark, which
is the ratio of the time during which DRAMD is enabled to the time during which DRAMD is disabled.

1) DRAM attacks: [1] found a new attack vector that
targets the row buffer in DRAM modules. While accesses
to this buffer are fast, accesses to other memory locations
in DRAM are much slower. This timing difference can be
exploited to obtain fine-grained information across virtual
machine boundaries. [4] exploits the DRAM row buffer timing
differences to recover an eviction cache set from a virtual
address without relying on large pages in the SGX enclave.
[17] implements the attack in the SGX enclave to extract
sensitive information in a cross-enclave environment.

2) Cache attacks: Side and covert channels using the CPU
cache exploit the fact that cache hits are faster than cache
misses. The methods Prime+Probe [3], [34] and Flush+Reload
[35] (along with its variant, Flush+Flush [36]) have been
presented to build either side or covert channels. Attacks
targeting the last-level cache are cross-core attacks but require
the sender and receiver to operate on the same physical
CPU. [35] presented the first LLC side channel attacks using
Flush+Reload. [3] introduced an effective implementation of
the Prime+Probe-based side channel attack against the LLC.
[36] demonstrated a stealthy LLC attack using Flush+Flush.

3) SGX attacks: Various micro-architectural side and covert
channel attacks have been demonstrated on SGX, including
CPU cache attacks [37], [38], BTB attacks [39], page-table
attacks [40], and cache-DRAM attacks [17].

B. Countermeasure

This paper is the first work dedicated to detect DRAM chan-
nels. Only a few straightforward methods for detecting non-
SGX DRAM attacks have been presented in previous work
and only as a minor aspect. Most existing countermeasures
focus only on cache channels and SGX channels.

1) Cache channel defenses: Existing cache countermea-
sures can be categorized into hardware- and software-based
solutions. Hardware-based solutions focus on new cache de-
signs, such as partitioned caches [5], randomized/remapping
caches [41], [42], and line-locking caches [6], [7]. Software-
based solutions can be divided into three categories: detection
countermeasures [8], [9], neutralization countermeasures [10],
and elimination countermeasures [43], [44].

2) SGX channel defenses: Most known defenses are de-
signed specifically toward page-fault side channel attacks.
[45] proposed a compiler-based approach to transform cryp-
tographic programs to hide page access patterns that may

leak information. [46] proposed T-SGX, which exploits Intel’s
transactional synchronization extensions (TSX), to prevent
page faults from revealing the faulting address. [47] proposed
a secure enclave architecture that is similar to SGX but that
is resilient to both page-fault and cache side channel attacks.

VII. CONCLUSION

DRAM side and covert channel attacks pose severe threats
to system security. In this paper, our findings are two-fold.
First, we demonstrate that existing detection techniques based
on high cache miss and high bank locality features cannot
detect SGX-based DRAM attacks. We also present one-row
DRAM attack, a new type of DRAM attack, to relax certain
attack conditions. Second, we design DRAMD, a software
system to detect both traditional non-SGX DRAM attacks and
SGX-based DRAM attacks. DRAMD leverages the existing
hardware performance counters to capture the high cache miss
features of non-SGX attacks, and to track OS functions that
are responsible for SGX process scheduling to detect DRAM
attack activity concealing in SGX. DRAMD is designed as
a lightweight service in the OS kernel and does not require
any new hardware, OS, or application modifications. The fea-
sibility of DRAMD is validated by our implementation on the
Ubuntu 16.04 OS kernel. Our evaluation shows that DRAMD
can effectively detect DRAM attacks while simultaneously
introducing little overhead to benign applications.

VIII. ACKNOWLEDGEMENT

This work was supported in part by National Natural Sci-
ence Foundation of China under Grant 61772308, 61972224
and U1736209, and BNRist Network and Software Secu-
rity Research Program under Grant BNR2019TD01004 and
BNR2019RC01009.

REFERENCES

[1] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“{DRAMA}: Exploiting {DRAM} addressing for cross-cpu attacks,”
in 25th {USENIX} Security Symposium ({USENIX} Security 16), 2016,
pp. 565–581.

[2] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches.” in USENIX Security
Symposium, 2015, pp. 897–912.

[3] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015, pp. 605–622.

[4] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3–24.

[5] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“Secdcp: Secure dynamic cache partitioning for efficient timing channel
protection,” in Design Automation Conference, 2016, pp. 1–6.

[6] Y. Chen, M. Khandaker, and Z. Wang, “Secure in-cache execution,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 381–402.

[7] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-based
side channel attacks,” in Computer Architecture (ISCA), 2017 ACM/IEEE
44th Annual International Symposium on. IEEE, 2017, pp. 347–360.

[8] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118–140.

[9] M. Yan, Y. Shalabi, and J. Torrellas, “Replayconfusion: detecting cache-
based covert channel attacks using record and replay,” in The 49th An-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE
Press, 2016, p. 39.

[10] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. Marvel, “Malicious co-residency on the cloud: Attacks and
defense,” in INFOCOM 2017-IEEE Conference on Computer Commu-
nications, IEEE. IEEE, 2017, pp. 1–9.

[11] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-vm row hammer attacks and privilege escalation,” in
25th {USENIX} Security Symposium ({USENIX} Security 16), 2016,
pp. 19–35.

[12] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–
755, 2016.

[13] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[14] C. E. A. Shannon, “A mathematical theory of communication. at&t tech
j,” Acm Sigmobile Mobile Computing & Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[15] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer, “Hello from the other side: Ssh over robust
cache covert channels in the cloud,” NDSS, San Diego, CA, US, 2017.

[16] IntelCorporation, “Intel sgx: Debug, production, pre-release what’s
the difference?” https://software.intel.com/en-us/blogs/2016/01/07/
intelsgx-debug-production-prelease-whats-the-difference.

[17] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2421–2434.

[18] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
in Proceedings of the 8th ACM international conference on Autonomic
computing. ACM, 2011, pp. 31–40.

[19] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: A
dram page-mode scheduling policy for the many-core era,” in 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2011, pp. 24–35.

[20] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245–261.

[21] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
task migration in multi-processor systems-on-chip: a feasibility study,”
in Proceedings of the Design Automation & Test in Europe Conference,
vol. 1. IEEE, 2006, pp. 1–6.

[22] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. ” O’Reilly Media, Inc.”, 2005.

[23] R. Love, Linux Kernel Development: Linux Kernel Development p3.
Pearson Education, 2010.

[24] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the burst:
Remote identification of encrypted video streams,” in 26th {USENIX}
Security Symposium ({USENIX} Security 17), 2017, pp. 1357–1374.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] IntelCorporation, “Intel-software-guard-extensions/downloads,” https://
01.org/zh/intel-software-guard-extensions/downloads?langredirect=1.

[27] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: ACM, 2018, pp. 41–42. [Online]. Available:
http://doi.acm.org/10.1145/3185768.3185771

[28] C. Bienia, “Benchmarking modern multiprocessors,” Dissertations &
Theses - Gradworks, 2011.

[29] EPFL:Cloudsuite, http://cloudsuite.ch/.
[30] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-

based cache attacks on aes to practice,” in Security and Privacy (SP),
2011 IEEE Symposium on. IEEE, 2011, pp. 490–505.

[31] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 305–316.

[32] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed
covert channel attacks in the cloud.” in USENIX Security symposium,
2012, pp. 159–173.

[33] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Cap-
kun, “Thermal covert channels on multi-core platforms,” Computer
Science, 2015.

[34] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S $ a: A shared cache attack
that works across cores and defies vm sandboxing–and its application to
aes,” in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE,
2015, pp. 591–604.

[35] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in Usenix Conference on Security Sym-
posium, 2014, pp. 719–732.

[36] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast
and stealthy cache attack,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2016,
pp. 279–299.

[37] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security. ACM, 2017, p. 2.

[38] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels
for untrusted operating systems,” in 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17), 2017, pp. 299–312.

[39] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside {SGX} enclaves with branch shadow-
ing,” in 26th {USENIX} Security Symposium ({USENIX} Security 17),
2017, pp. 557–574.

[40] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1041–1056.

[41] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, pp. 8–16, 2016.

[42] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks,” in Design Automation Confer-
ence, 2017, p. 7.

[43] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee,
“Catalyst: Defeating last-level cache side channel attacks in cloud com-
puting,” in IEEE International Symposium on High PERFORMANCE
Computer Architecture, 2016, pp. 406–418.

[44] X. Meng, L. Thi, P. Xuan, H. Y. Choi, and I. Lee, “vcat: Dynamic
cache management using cat virtualization,” in Real-time & Embedded
Technology & Applications Symposium, 2017, pp. 211–222.

[45] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security. ACM,
2016, pp. 317–328.

[46] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in NDSS, 2017.

[47] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 857–874.

https://software.intel.com/en-us/blogs/2016/01/07/intelsgx-debug-production-prelease-whats-the-difference
https://software.intel.com/en-us/blogs/2016/01/07/intelsgx-debug-production-prelease-whats-the-difference
https://01.org/zh/intel-software-guard-extensions/downloads?langredirect=1
https://01.org/zh/intel-software-guard-extensions/downloads?langredirect=1
http://doi.acm.org/10.1145/3185768.3185771
http://cloudsuite.ch/

