
CDN Backfired: Amplification Attacks Based on
HTTP Range Requests

Weizhong Li∗, Kaiwen Shen∗, Run Guo∗, Baojun Liu∗, Jia Zhang∗¶�,
Haixin Duan∗‖�, Shuang Hao†, Xiarun Chen‡, Yao Wang§

∗ Tsinghua University,
{lwz17, skw17, gr15, lbj15}@mails.tsinghua.edu.cn, zhangjia@cernet.edu.cn, duanhx@tsinghua.edu.cn

† University of Texas at Dallas, shao@utdallas.edu
‡ Peking University, xiar c@pku.edu.cn

§ Beijing Information Science & Technology University, lemonvegetablefish@gmail.com
¶ Beijing National Research Center for Information Science and Technology

‖ Research Institute of Qi-AnXin Group

Abstract—Content Delivery Networks (CDNs) aim to improve
network performance and protect against web attack traffic for
their hosting websites. And the HTTP range request mechanism
is majorly designed to reduce unnecessary network transmission.
However, we find the specifications failed to consider the security
risks introduced when CDNs meet range requests.

In this study, we present a novel class of HTTP amplifi-
cation attack, Range-based Amplification (RangeAmp) Attacks.
It allows attackers to massively exhaust not only the outgoing
bandwidth of the origin servers deployed behind CDNs but
also the bandwidth of CDN surrogate nodes. We examined the
RangeAmp attacks on 13 popular CDNs to evaluate the feasibility
and real-world impacts. Our experiment results show that all
these CDNs are affected by the RangeAmp attacks. We also
disclosed all security issues to affected CDN vendors and already
received positive feedback from all vendors.

Index Terms—CDN Security, HTTP Range Request, Amplifi-
cation Attack, DDoS

I. INTRODUCTION

Content Delivery Networks (CDNs) redirect web requests
from client users to geographically distributed surrogate
servers and are regarded as an important part of the Internet
infrastructure. CDN vendors significantly improve the perfor-
mance and scalability of their hosting websites by delivering
their web resources globally. In addition, CDNs are also
famous for their sophisticated protection mechanisms against
web attacks, including normalizing or filtering the intrusions
traffic, offloading DDoS traffic to global surrogate nodes. As
a result, CDN vendors are widely trusted by the most popular
websites all over the world. For example, Akamai, the leading
CDN service provider, is responsible for serving between 15%
and 30% of all web traffic according to a public report [1].

At the same time, the HTTP protocol also goes further. The
HTTP range request mechanism is designed to allow a client to
request just a part of a web resource [2]. Therefore, the client
can not only retrieve partial content of large representations
but also efficiently recover from partially failed transfers.
Currently, despite the fact that this mechanism is only an
optional feature of HTTP, the RFC specifications still suggest

� Corresponding author.

that web servers and intermediate cache servers should support
it. And in the real world, range requests have been strongly
supported by CDN vendors and widely applied in multi-thread
file downloading and resuming from break-point.

Unfortunately, while the RFC specifications are generally
clear on how to parse and interpret range requests, we find
the implementations of CDN vendors problematic. In this
study, we present two types of “Range-based Amplification
(RangeAmp) Attacks”, which allow attackers to exploit the
Range implementation vulnerabilities and damage DDoS
protection mechanisms of CDNs. Specifically, the RangeAmp
attacks include Small Byte Range (SBR) Attack and Over-
lapping Byte Range (OBR) Attack. The SBR attack, which
leverages the aggressive prefetch strategy of CDN platforms,
enables attackers to massively consume network bandwidth
of the origin servers hosted on CDNs by performing some
crafted HTTP range requests, see section IV-B. Worse, by
exploiting the implementation flaws on multi-range requests
and by connecting the vulnerable CDNs, the OBR attack even
allows attackers to directly damage the performance of CDN
nodes by building up a huge number of multi-part responses
between specific CDN nodes, see section IV-C. Therefore, the
RangeAmp attacks can bring significantly detrimental impacts
on both CDN hosting servers and CDN surrogate nodes.

In this study, we also evaluate the RangeAmp attacks in
the wild by conducting a series of controlled experiments
on 13 popular CDN vendors. Our experiment results show
that all examined CDN vendors are seriously affected by the
RangeAmp attacks, with 13 CDNs vulnerable to the SBR
attack and 11 combinations of cascaded CDNs vulnerable to
the OBR attack. For instance, using Akamai or G-Core Labs to
perform an SBR attack, an attacker is able to compel the origin
website to generate response traffic 43000 times larger than
the one received by the attacker. Besides, when connecting
Cloudflare and Akamai to launch an OBR attack and selecting
a 1KB file as the target resource, an attacker is able to
force specific nodes of these two CDNs to transfer traffic
over 12MB with just one multi-range request. Therefore, the
RangeAmp attacks introduce serious security threats against

1

the availability of CDN infrastructure.
At last, we propose mitigation solutions and recommenda-

tions to different roles, including the origin website administra-
tors, the CDN vendors, and the HTTP protocol specifications.
We also responsibly disclosed all found vulnerabilities to
affected CDN vendors. Until the paper was finalized, we
received some positive feedback from all vendors, some of
which have fixed RangeAmp vulnerabilities.

Overall, our study makes the following contributions.
• We present a novel class of HTTP amplification attack,

Range-based Amplification (RangeAmp) Attacks. The
RangeAmp attacks can be used to consume the outgoing
bandwidth of victims, which not only downgrades the
network availability but also brings economic losses.

• We examine the RangeAmp attacks on 13 popular CDN
vendors and evaluate the feasibility and severity of
RangeAmp vulnerabilities. We find all examined CDNs
are vulnerable to the RangeAmp attacks, and the ampli-
fication factor is up to 43000 times in some cases.

• We also responsibly disclosed all security issues to af-
fected CDN vendors. Further, we analyze the root cause
of RangeAmp vulnerabilities and propose countermea-
sures and mitigation solutions.

We organize the rest of this paper as follows. Section II pro-
vides the background of CDN and HTTP range request mech-
anism. Section III shows the range-specific implementations
in CDNs. Section IV describes the details of the RangeAmp
attacks. We evaluate the feasibility of the RangeAmp attacks
and explore the amplification factors in Section V. We discuss
mitigation solutions and our responsible disclosure in Sec-
tion VI and Section VII. Section VIII elaborates on the related
works, including HTTP Range security, CDN security, and
amplification attacks. And section IX concludes this paper.

II. BACKGROUND

A. CDN Overview

CDN network is made up of server clusters geo-located
globally. CDNs have evolved to become an important part
of the Internet infrastructure. It not only improves the per-
formance for its customer websites but also provides security
features such as DDoS protection mechanisms.

CDN network can be divided into two parts: central and
edge nodes. Central nodes are used for global load balancing
and content management. Edge nodes are used for content
distribution and caching and classified as ingress nodes and
egress nodes according to their positions and functions. In
general, ingress nodes are close to the user and responsible
for user access and content distribution, while egress nodes
are close to the origin website and retrieve contents from it.

As it is shown in Fig 1, in a CDN environment, there are
multiple segments of connectivity in the network path between
the client and the origin server, including one between the
client and the CDN (recognized as client-cdn), one between
the CDN and the origin server (recognized as cdn-origin), and
one(s) within the CDN or between CDNs.

Client OriginCDN

TCP	Connection TCP	ConnectionTCP	Connection(s)

Ingress	Node Egress	Node

Fig. 1. Multiple segments of connectivity in a CDN environment

Two CDNs can be cascaded together [3], as shown in Fig 3b.
For convenience, we recognize the front-end CDN as FCDN
and the back-end CDN as BCDN. There are at least 3 TCP
connections in Figure 3b, including client-fcdn, fcdn-bcdn and
bcdn-origin.

If a user requests data, the CDN first tries to respond from
the local cache [4]. In the case of a cache miss, it forwards the
request to the origin server to obtain the target resource and
caches the response for subsequent requests. This mechanism
can efficiently reduce user access delay and decrease load
pressure on the origin server. Besides, CDNs select edge
nodes dynamically by load balancing, which provides DDoS
protection to the origin server.

However, a user is able to make a cache miss and
force web requests to be forwarded to the origin server.
Previous studies [5], [6] show that dynamic resource requests
will be always forwarded to the origin server, and appending
a random query string into the target URL can also bypass
the CDN’s caching mechanism. Moreover, most CDNs (e.g.,
Azure, Cloudflare, etc) provide configurable options to cus-
tomize caching policy [3], which makes a malicious customer
able to disable resource caching.

B. HTTP Range Request Mechanism

Because of canceled requests or dropped TCP connections,
HTTP clients often encounter interrupted data transfers. How-
ever, HTTP is a stateless application protocol. When request-
ing large media or downloading files, interrupted transfers
require the client to re-transfer the entire resource. This brings
inefficient network transmissions and bad user experiences.

Therefore, the protocol specifications [2], [7], [8] introduce
the HTTP range request mechanism to improve the trans-
mission efficiency of web resources. Range requests allow
clients to efficiently recover from partially failed transfers and
retrieve partial content of large resources, effectively reducing
unnecessary data transmission. This mechanism is especially
useful to perform multi-thread transfers and resuming from
break-point when downloading large files.

Although the range request mechanism is an optional fea-
ture of HTTP, the specifications suggest that origin servers
and intermediate caches ought to support it when possible.
If a server supports byte-range requests, it will insert an
Accept-Ranges header in the response and set the field
value to “bytes”, otherwise, it will set the field value to “none”
or not insert such a response header.

A range request uses a Range header to specify one or
more sub-ranges of the target resource, as shown in Figure 2a
and Figure 2b. According to the specifications, the valid

2

GET	/1KB.jpg	HTTP/1.1
Host:	example.com
Range:	bytes=0-0

		1
		2
		3
		4
		5
	

GET	/1KB.jpg	HTTP/1.1
Host:	example.com
Range:	bytes=1-1,-2

		1
		2
		3
		4
		5
	

HTTP/1.1	206	OK
Content-Length:	1
Accept-Ranges:	bytes
Content-Type:	image/jpeg
Content-Range:	bytes	0-0/1000

\xff

		1
		2
		3
		4
		5
		6
		7

HTTP/1.1	206	OK
Content-Length:	208
Accept-Ranges:	bytes
Content-Type:	multipart/byteranges;
boundary=THIS_STRING_SEPARATES

--THIS_STRING_SEPARATES
Content-Type:	image/jpeg
Content-Range:	bytes	1-1/1000

\xff
--THIS_STRING_SEPARATES
Content-Type:	image/jpeg
Content-Range:	bytes	998-999/1000

f\x00
--THIS_STRING_SEPARATES--

		1
		2
		3
		4
		
		5
		6
		7
		8
		9
10
11
12
13
14
15
16
17
18

(a)	range	request	with	a	single	byte	range

(b)	range	request	with	multiple	byte	ranges

(c)	206	response	to	the	request	in	(a)	
(d)	multipart	response	to	the	request	in	(b)	

Fig. 2. Examples of range requests and partial responses

format of a Range header is “Range: bytes=first byte pos-
[last byte pos]” or “Range: bytes=-suffix length”.

A website server can behave differently when receiving
a range request: 1) If the server does not support range
requests, it ignores the Range header and returns an HTTP
200 response when the request has no errors. Otherwise, 2) if
the specified range is valid, it returns an HTTP 206 response;
3) if the Range header is invalid or the specified range is out
of bounds, it returns an HTTP 416 response.

Based on the specified valid range, the server generates
a single-part or multi-part 206 response. A single-part 206
response contains a Content-Range header to indicate
where the transmitted partial content is located in the target
resource, as shown in Figure 2c. A multi-part 206 response
must contain a Content-Type header whose field value
is “multipart/byteranges”, indicating that it will be sent as
a multi-part message. But it must not directly contain a
Content-Range header, which will be sent in each part
instead, as shown in Figure 2d.

III. RANGE-SPECIFIC IMPLEMENTATIONS IN CDNS

In this section, we first present why we specifically explore
these 13 CDN providers. Then, we analyze and clarify their
range request handling behaviors which lead to the RangeAmp
attacks.

A. Consideration in Selecting CDN Vendors

We test 13 popular CDNs around the world, including
Akamai, Alibaba Cloud, Azure, CDN77, CDNsun, Cloudflare,
CloudFront, Fastly, G-Core Labs, Huawei Cloud, KeyCDN,
StackPath, and Tencent Cloud. These CDNs are often studied
in previous related works [3], [9], [10], and most of them rank
high in the market share [11]. Moreover, most of these CDNs
provide free or free-trial accounts, which indicates little cost
to launch an attack.

Akamai only provides services for enterprise customers, but
we manage to configure an Akamai service on the Microsoft
Azure platform and have a free trial for one month. We
check all ingress and egress IPs in corresponding Akamai
experiments and confirmed that these IPs indeed belong to
Akamai. Tencent Cloud only provides paid services, but it

gives away 50GB of free traffic every month within half a
year. Neither Huawei Cloud nor Alibaba Cloud provides free
services, and we have spent less than $10 in our experiments.

In all subsequent experiments, we deploy our origin server
individually behind these CDNs and apply their default con-
figuration.

B. Differences in CDNs Handling Range Requests

According to HTTP specifications [2], [7], [8], HTTP imple-
mentations ought to support range requests when possible. To
find out which CDNs support range requests, we invalidate
it on our origin server and send a valid range request to
each CDN. The result is that our origin server always returns
a 200 response with no Accept-Range header, but all
CDNs return a 206 response with an Accept-Range header
whose field value is “bytes”. Therefore, we conclude that these
13 CDNs all support range requests, indeed following the
suggestion of the specifications.

However, it is not clearly defined in the specifications how
CDNs should forward a range request. We find that CDNs
have different policies to handle the Range header before
forwarding a valid range request, including:

• Laziness – Forward the Range header without change.
• Deletion – Remove the Range header directly.
• Expansion – Extend it to a larger scale of byte range.

When receiving a range request, most CDNs prefer to
adopt the Deletion policy or the Expansion policy (see
Section V-A) because they believe that the client may continue
requesting other byte ranges of the same resource. In this
case, the CDN removes the Range header or extends it to
a larger byte range when forwarding a range request, and then
caches the responses for subsequent range requests. This does
optimize caching, reduce access latency, and prevent excessive
back-to-origin requests.

The range request mechanism also allows the client to
request multiple sub-ranges of the target resource, as de-
scribed in Section II-B. However, RFC2616 [7] places no
restrictions on such multi-range requests. The “Apache Killer”
[12], known as CVE-2011-3192 [13], can exhaust memory on
the Apache server by creating a number of threads that use
a Range header with multiple ranges. Therefore, RFC7233
[2] adds some security considerations to multi-range requests,
suggesting that an HTTP server ought to ignore, coalesce,
or reject range requests with more than two overlapping
ranges or many small ranges in the Range header. We find
that most CDNs indeed adopt the suggestion of RFC7233 but
unfortunately, some CDNs ignore it (see Section V-A).

IV. RANGE-BASED HTTP AMPLIFICATION ATTACKS

The Deletion and Expansion policy are beneficial for CDNs
to improve service performance. But we notice that these
policies will require CDNs to retrieve many more bytes from
the origin server than the ones requested by the client. Also, if
a CDN returns a multi-part response to a multi-range request
without checking if ranges overlap, the response sent by the

3

CDN can be thousands of times larger than the one from the
origin server. These cases will cause serious traffic differences
between different connections in the network path from the
client to the origin server.

A. Threat Model

The significant traffic differences caused by range-specific
policies will bring a novel class of traffic amplification attacks,
denoted “Range-based Amplification (RangeAmp) Attacks”.
We identified two scenarios of the RangeAmp attacks and
respectively present them in Section IV-B and Section IV-C.

Attacker Origin

OriginFCDN BCDN

CDN

little	traffic

little	traffic large	traffic

little	trafficlarge	traffic

Sending	range	requests

(a)

(b)

Fig. 3. General construction of the RangeAmp Attacks

In a RangeAmp attack, the attacker is able to craft malicious
but legal range requests to the CDN, as shown in Fig 3. One
of the victims is the origin server in Fig 3a, which is being
normally hosted on the CDN by the owner, or maliciously
deployed on the CDN by the attacker [14]. The other victims
are the FCDN and the BCDN in Fig 3b, which is maliciously
cascaded together by the attacker.

Through an empirical study, we show that the attacker
can perform a traffic amplification attack with little cost and
exhaust the bandwidth of its victims.

B. Small Byte Range(SBR) Attack

If a CDN adopts the Deletion or Expansion policy to
handle range requests, an attacker can craft a Range header
with a small byte range to launch a RangeAmp attack. We
call it “Small Byte Range(SBR) Attack”. In an SBR attack,
the cdn-origin connection will transport a much larger traffic
than the client-cdn connection, which makes the attacker able
to attack against the origin server hosted on the CDN.

GET	/test.jpg	HTTP/1.1
Range:	bytes=<small	range>

GET	/test.jpg	HTTP/1.1
Range:	bytes=<large	range>

206	response
small	traffic

206/200	response
large	traffic

① ②

③④
CDN OriginAttacker

Fig. 4. Flow and example construction of the SBR Attack

As shown in Fig 4, the attacker crafts a range request with
a small byte range like “Range: bytes=0-0”, and sends it to a
vulnerable CDN. As described at the end of Section II-A, an
attacker can easily make a cache miss. Therefore, the CDN
will remove the Range header or extend it to a larger byte
range, and then forward the request to the origin server. This

results in that the origin server returns an entire copy or a large
range of the target resource, but the CDN returns a partial
content with only the specified range, which can even be a
single byte.

In an SBR attack, response traffic in the client-cdn connec-
tion is just hundreds of bytes (little). If the CDN adopts the
Deletion policy, response traffic in the cdn-origin connection
is equivalent to the entire target resource (much greater).
Therefore, the bigger the target resource, the larger the
amplification factor. But if the CDN adopts the Expansion
policy, the amplification factor will only be a fraction of the
one in the previous case.

C. Overlapping Byte Ranges(OBR) Attack

If the FCDN adopts the Laziness policy and the BCDN
returns a multi-part response without checking whether
ranges overlap, an attacker can craft a Range header with
multiple overlapping byte ranges to launch another RangeAmp
attack. We call it “Overlapping Byte Ranges(OBR) Attack”. In
an OBR attack, the fcdn-bcdn connection will transport a much
larger traffic than the bcdn-origin connection, which makes
the attacker able to greatly consume the bandwidth available
between the FCDN and the BCDN. The attacker can send all
multi-range requests to the same ingress node of the FCDN,
and set the FCDN’s origin server to be a specific ingress node
of the BCDN, to perform the OBR attack against these specific
nodes.

rang
e	req

uest	

n	ov
erlap

ping
	rang

es

206	
respo

nse

little
	traff

ic

range	request	

n	overlapping	ranges206	response

large	traffic

200	
respo

nse

little
	traff

ic

(rang
e)	re

ques
t①

②

③

④

⑤
⑥

OriginAttacker

BCDN

FCDN

Fig. 5. Flow and example construction of the OBR Attack

As shown in Fig 5, the attacker crafts a multi-range request
with n overlapping byte ranges like “Range: bytes=0-,0-,...,0-
” (the number of “0-” is n), and sends it to the FCDN. The
FCDN directly forwards it to the BCDN. After handling the
Range header, the BCDN forwards the request to the origin
server where range requests are disabled by the attacker. The
origin server will return a 200 response with the entire copy
of the target resource, but the BCDN will return a n-part
response, which can be up to n times the size of the entire
target resource.

The OBR attacker can set a small TCP Receive Window to
make himself only receive little data [15], [16]. Besides, some
CDNs will maintain the connection between itself and the
upstream server when the client-cdn connection is abnormally
aborted [5], such as CDNsun and CDN77. Thus, the attacker is
able to consume much smaller resources by actively aborting
the client-cdn connection.

In an OBR attack, when the target resource is fixed, re-
sponse traffic in the bcdn-origin connection is always roughly

4

the same. But response traffic in the fcdn-bcdn connection
is nearly proportional to the number of overlapping ranges.
Apparently, the greater the number of overlapping ranges,
the larger the amplification factor. But the number of
overlapping ranges is limited by the maximum length of the
Range header which is generally restricted by the request
header size limit of particular CDN. Therefore, the maximum
length of the Range header finally determines the upper-
bound of the amplification factor.

V. REAL-WORLD EVALUATION

To explore the feasibility and severity of RangeAmp vulner-
abilities in the wild, we conduct a series of experiments. We
examine which CDNs are vulnerable to the RangeAmp attacks,
calculate the actual amplification factors, and analyze the
practical impacts. In all experiments, our origin server is the
same Linux server with 2.4GHz of CPU, 16G of memory and
1000Mbps of bandwidth. And our origin website is powered
by Apache/2.4.18 with the default configuration applied.

A. Feasibility of the RangeAmp Attacks

To analyze whether RangeAmp vulnerabilities exist in prac-
tical environments, we test the actual range-specific policies
of each CDN to figure out which CDNs are vulnerable to the
SBR and/or OBR attack.

In our first experiment, the data-set is a large number of
valid range requests automatically generated based on the
ABNF rules described in the RFCs [2], [7], [8]. We send
these range requests to each CDN and ensure that they will be
forwarded to our origin server. At the same time, we collect
all requests and responses on the client and the origin server.

We compare the request sent by the client with the cor-
responding one received by the origin server to analyze the
range forwarding behaviors of each CDN, and the vulnerable
results of small byte range(s) and multiple overlapping ranges
are summarized respectively in Table I and Table II. We also
compare the payload size of the response sent by the server
and the corresponding one received by the client to discover
the vulnerable replying behaviors of multi-range requests, as
shown in Table III.

Table I shows that a total of 13 CDNs are vulnerable
to the SBR attack. The second column lists the vulnerable
range formats, and the third column presents the CDNs’ actual
policies of handling the corresponding Range headers. The
details are shown below:

1) Akamai, Alibaba Cloud, CDN77, CDNsun, Cloud-
flare, Fastly, G-Core Labs, Huawei Cloud, and Tencent
Cloud adopt the Deletion policy for some formats of the
Range header. Among them, the entries with (*) are con-
ditional. Alibaba Cloud and Tencent Cloud both provide a
Range option to configure whether the back-to-origin request
contains a Range header, and only when this option is set
to disable, the vulnerable range forwarding behaviors shown
in Table I occurs. Huawei Cloud also provides such a Range
option, but it is vulnerable only when this option is set to
enable. Cloudflare allows its users to customize caching rules,

and it is vulnerable only when the target path is configured to
be cacheable.

2) Azure first adopts the Deletion policy to handle a
Range header like “Range: bytes=first-last”. But if the
file size of the target resource is larger than 8MB and
[first,last]⊂[8388608,16777215], Azure will adopt the Ex-
pansion policy to replace the Range header with “Range:
bytes=8388608-16777215” and then forward the new request
to the origin server. In this case, there will be two cdn-origin
connections, and if the HTTP payload transferred in the first
cdn-origin connection is over 8MB, Azure will close this
connection immediately. Considering network latency, actual
response traffic in the first connection will be a little larger
than 8MB. As a result, if the target resource exceeds 16MB,
the response traffic in the two cdn-origin connections will be
both approximately 8MB.

TABLE I
RANGE FORWARDING BEHAVIORS VULNERABLE TO SBR ATTACK

CDN Vulnerable Range Format Forwarded Range Format

Akamai
bytes=first-last
bytes=-suffix

None
None

Alibaba Cloud bytes=-suffix None (*)

Azure
bytes=first-last (F≤8MB)
bytes=8388608-8388608 (F>8MB)

None
None & bytes=8388608-16777215

CDN77 bytes=first-last (first<1024) None

CDNsun bytes=0-last None

Cloudflare
bytes=first-last
bytes=-suffix

None (*)
None (*)

CloudFront
bytes=first-last
bytes=first1 -last1 ,...,firstn-lastn

bytes=first′ -last′

bytes=first′ -last′

Fastly
bytes=first-last
bytes=-suffix

None
None

G-Core Labs
bytes=first-last
bytes=-suffix

None
None

Huawei Cloud
bytes=-suffix (F<10MB)
bytes=first-last (F≥10MB)

None (*)
None & None (*)

KeyCDN bytes=first-last (& bytes=first-last) bytes=first-last (& None)

StackPath
bytes=first-last
bytes=-suffix

bytes=first-last [& None]
bytes=first-last [& None]

Tencent Cloud bytes=first-last None (*)

Note: F is the file size of the target resource.

TABLE II
RANGE FORWARDING BEHAVIORS VULNERABLE TO OBR ATTACK

CDN Vulnerable Range Format Forwarded Range Format

CDN77 bytes=start1 -,start2 -,...,startn - (start1≥1024) Unchanged

CDNsun bytes=start1 -,start2 -,...,startn - (start1≥1) Unchanged

Cloudflare bytes=start1 -,start2 -,...,startn - Unchanged (*)

StackPath bytes=start1 -,start2 -,...,startn - Unchanged [& None]

3) CloudFront completely adopts the Expansion policy to
handle the Range header. For a Range header like “Range:
bytes=first-last”, CloudFront will replace it with “Range:

5

TABLE III
RANGE REPLYING BEHAVIORS VULNERABLE TO OBR ATTACK

CDN Vulnerable Ranges Format Response Format

Akamai bytes=start1 -,start2 -,...,startn- n-part response (overlapping)

Azure bytes=start1 -,start2 -,...,startn- (n ≤64) n-part response (overlapping)

StackPath bytes=start1 -,start2 -,...,startn - n-part response (overlapping)

bytes=first′-last′”, where first′ = (first � 20) � 20 and last′

= ((last � 20 + 1) � 20) - 1. For a Range header with
multiple ranges like “Range: bytes=first1-last1,...,firstn-lastn”,
CloudFront will replace it with “Range: bytes=first′-last′” if
last′ - first′ + 1 ≤ 10485760, where first′ = (min(first list)
� 20) � 20, last′ = ((max(last list) � 20 + 1) � 20) - 1,
first list = [first1, ..., firstn] and last list = [last1, ..., lastn].
For example, when receiving a Range header like “Range:
bytes=0-0,9437184-9437184”, CloudFront will change it to
“Range: bytes=0-10485759”. In this case, response traffic in
the client-cdn connection is just hundreds of bytes, but the one
in the cdn-origin connection is over 10MB.

4) KeyCDN adopts the Laziness policy for a Range header
like “Range: bytes=first-last” and does not cache the response
from the origin server. But if KeyCDN receives the same range
request again, it will adopt the Deletion policy to handle the
Range header. Therefore, we can send a range request twice
to abuse KeyCDN to launch an SBR attack.

5) StackPath first adopts the Laziness policy to forward
range requests. If it receives a 206 response from the origin
server, it will continue to remove the Range header and then
forward the new request to the origin server again. Evidently,
StackPath is also vulnerable to the SBR attack.

Table II shows that 4 CDNs can be abused as the FCDN and
are vulnerable to the OBR attack, including CDN7, CDNsun,
Cloudflare and StackPath. The second column lists the vulner-
able range formats, and the third column tells the CDNs’ actual
policies of handling the corresponding Range headers. The
entries with (*) are conditional. As described above, Cloudflare
allows customizing caching rules. But instead, it is vulnerable
only when the target path is configured to be Bypass.

Table III shows that 3 CDNs can be abused as the BCDN
and are vulnerable to the OBR attack, including Akamai,
Azure, and StackPath. The second column lists the vulnerable
multi-range formats, and the third column tells how CDNs
respond to the corresponding multi-range request.

B. The Amplification Factor of the SBR Attack

As shown in Section V-A, there are 13 CDNs vulnerable to
the SBR attack. We further conduct the second experiment in
the wild to explore the amplification factor of this attack.

In our second experiment, the exploited Range header
cases, listed in the second column of Table IV, are generated
based on Table I. They tend to make the client receive as little
traffic as possible and make the server send as much traffic as
possible. As described in Section IV-B, the amplification factor
is almost proportional to the target resource size. Therefore, we

request different target resources ranging from 1MB to 25MB
stepped by 1MB. We capture all response traffic in the cdn-
origin connection and the client-cdn connection and calculate
the amplification factors. The result is shown in Fig 6a-6c.
And the specific amplification factors are listed in column 3-5
of Table IV when the target resource size is 1MB, 10MB, and
25MB.

TABLE IV
THE AMPLIFICATION FACTOR VARIES WITH THE FILE SIZE OF THE TARGET

RESOURCE IN THE SBR ATTACK.

Amplification Factor
CDN Exploited Range Case

1MB 10MB 25MB

Akamai bytes=0-0 1707 16991 43093

Alibaba Cloud bytes=-1 1056 10498 26241

Azure
bytes=0-0 (F≤8MB)
bytes=8388608-8388608 (F>8MB) 1401 15016 23481

CDN77 bytes=0-0 1612 15915 40390

CDNsun bytes=0-0 1578 15705 38730

Cloudflare bytes=0-0 1282 12791 31836

CloudFront bytes=0-0,9437184-9437184 1356 9214 9281

Fastly bytes=0-0 1286 12836 31820

G-Core Labs bytes=0-0 1763 17197 43330

Huawei Cloud
bytes=-1 (F<10MB)
bytes=0-0 (F≥10MB) 1465 14631 36335

KeyCDN bytes=0-0 & bytes=0-0 724 7117 17744

StackPath bytes=0-0 1297 13007 32491

Tencent Cloud bytes=0-0 1308 12997 32438

Note: F is the file size of the target resource.

As illustrated in Fig 6a-6c, response traffic in client-cdn
connection is no more than 1500 bytes, while the amplification
factor is basically proportional to the target resource size for
each CDN. When the target resource size is fixed, the response
traffic from the server to different CDNs is almost the same.
But due to the great difference resulted from different response
headers inserted by CDNs, the slope of the amplification factor
varying with the target resource size is quite different. For
instance, Akamai and G-Core Labs insert fewer headers to
the response, causing their amplification factors to be larger
than other CDNs. There are three exceptions. The first one is
Azure. The response traffic from the server to Azure is up to
about 16MB with the exploited Range case. When the target
resource exceeds 16MB, the amplification factor of Azure
will stay unchanged(Fig 6a). The second one is CloudFront.
Similar to Azure, when the target resource exceeds 10MB, the
amplification factor of CloudFront no longer increases(Fig 6a).
The last one is KeyCDN. We need to send range requests twice
each time to make a traffic amplification. Therefore, KeyCDN
generates the largest response traffic(Fig 6b).

Take CloudFront as an example, when the target resource
is 1MB, the amplification factor is 1356; and when the target
resource exceeds 10MB, the amplification factor is about 9200.
Take Akamai as another example, when the target resource is

6

(a) Amplification factors

(b) Response traffic from the CDN to the client

(c) Response traffic from the origin server to the CDN

Fig. 6. Exploring the amplification factor of the SBR attack with different
target resources and different CDNs

1MB, the amplification factor is 1707, and when the target
resource is 25MB, the amplification factor is 43093. The detail
amplification factors of each CDN are listed in Table IV.

C. The Amplification Factor of the OBR Attack

As shown in Table II and Table III, 4 CDNs can be abused
as the FCDN and 3 CDNs can be abused as the BCDN.
Therefore, excluding the case where a CDN is cascaded with
itself, there are 11 combinations of cascaded CDNs potentially

vulnerable to the OBR attack, listed in column 1-2 of Table V.
To find the max amplification factor, we conduct the third
experiment.

In our third experiment, the test cases of multiple byte
ranges, listed in the third column of Table V, are generated
based on Table II and Table III. They tend to make the
BCDN return as much traffic as possible. For convenience, we
recognize the number of overlapping ranges as n. As described
in Section IV-C, the bigger n, the larger the amplification
factor.

While n is limited by the CDN’s constraints on the request
header size. Some CDNs even precisely restrict the number of
ranges in a multi-range request. We tested the default request
header size limits of related CDNs. Akamai limits the total
size of all request headers to 32KB, and StackPath limits it
to about 81KB. Both CDN77 and CDNsun limit the size of a
single request header to 16 KB. And Cloudflare’s constraints
on the Range header can be summarized as RL + 2HHL +
RHL ≤ 32411B, where RL is the size of the request line,
HHL is the size of the Host header, and RHL is the size of
the Range header. Only Azure limits the number of ranges in
the Range header to 64. According to these results, we get
the max n, as shown in the 4th column of Table V.

We use the max n to explore the max amplification factor
of the OBR attack. To minimize or avoid real impacts on
the performance of the corresponding vulnerable CDNs, our
target resource size is limited to be just 1KB. Moreover, we
set up a proxy between the FCDN and the BCDN to collect
traffic transferred between them. To achieve this, we configure
the FCDN’s origin server as our proxy server and set the
proxy server to forward requests to the BCDN. Eventually,
we capture all response traffic transmitted over the bcdn-origin
connection and the fcdn-bcdn connection, and calculated am-
plification factors, listed in column 5-7 of Table V.

As illustrated in Table V, response traffic in the bcdn-origin
connection is no more than 2000 bytes, but the one in the fcdn-
bcdn connection is much larger. For example, when abusing
CDN77 as the FCDN and Azure as the BCDN, the max
amplification factor is about 53. And when abusing Cloudflare
as the FCDN and Akamai as the BCDN, the max amplification
factor is about 7342. The detailed results are given in Table V.

D. Practicability of the RangeAmp Attacks

To avoid affecting the CDN’s normal operation, we conduct
controlled experiments in our study (see Section VI-A). But
a real-world attacker can continuously and concurrently send
a certain number of range requests to perform the RangeAmp
attacks. In an OBR attack, the victims are specific ingress
nodes of the FCDN and the BCDN. Due to an ethical concern,
we can’t launch a real attack to verify whether an ingress node
is affected. But in an SBR attack, the victim is the origin
server, thus we can evaluate the attack’s impact by checking
the outgoing bandwidth of our origin server.

We conduct the fourth experiment to evaluate the SBR
attack’s damage to bandwidth. Take Cloudflare as an example,
we concurrently send m range requests to Cloudflare every

7

TABLE V
THE MAX AMPLIFICATION FACTOR OF THE OBR ATTACK

FCDN BCDN Exploited Range Case Max n
Exploiting with 1KB of Target Resource and Max n

Traffic from Server to BCDN Traffic from BCDN to FCDN Amplification Factor

Akamai 5455 1676B 6350944B 3789.35

CDN77 Azure bytes=-1024,0-,...,0- 64 1620B 86745B 53.55

StackPath 5455 1808B 6413097B 3547.07

Akamai 5456 1676B 6337810B 3781.51

CDNsun Azure bytes=1-,0-,...,0- 64 1620B 84481B 52.15

StackPath 5456 1808B 6414011B 3547.57

Akamai 10750 1676B 12456915B 7432.53

Cloudflare Azure bytes=0-,0-,...,0- 64 1620B 85386B 52.71

StackPath 10750 1940B 12636554B 6513.69

Akamai 10801 1676B 12522091B 7471.41

StackPath Azure bytes=0-,0-,...,0- 64 1620B 82191B 50.74

StackPath - - - -

Note: n is the number of overlapping ranges in the exploited multi-range request.

(a) Incoming bandwidth consumption of the client (b) Outgoing bandwidth consumption of the origin server

Fig. 7. The bandwidth consumption of the client and the origin server with different number of attack requests

second, lasting 30 seconds. The target resource size is 10MB
and the outgoing bandwidth of the origin server is 1000Mbps.
During the experiment, we monitor the outgoing bandwidth
of the origin server and the incoming bandwidth of the client.
We iterate m from 1 to 15 to plot the trend of bandwidth
consumption against time in Fig 7a and Fig 7b.

As illustrated in Fig 7a-7b, no matter how large m is, the
incoming bandwidth consumption of the client is less than
500Kbps, but the outgoing bandwidth consumption of the
origin server is much larger. When m ≤ 10, it is less than
1000Mbps but almost proportional to m. When m ≥ 11, it
is close to 1000Mbps. Exactly, when m ≥ 14, the outgoing
bandwidth of the origin server is exhausted completely.

We perform the above experiment on all 13 CDNs. As
expected, the experimental results are similar. Some CDNs,
including Cloudflare and CloudFront, claim to have some
defenses against DDoS attacks. However, during our exper-

iments, vulnerable CDNs raised no alert while using their
default configuration for the potential defenses.

E. Severity Assessment

A serious and common practical impact. According to
our experiment results, the amplification factor of an SBR
attack is almost proportional to the target resource size, and
the one of an OBR attack is almost proportional to the
number of overlapping byte ranges. All 13 CDNs we tested are
vulnerable to the SBR attack, and 11 combinations of cascaded
CDNs are vulnerable to the OBR attack. As we described in
Section III-A, these CDNs are popular around the world and
rank high in the market share. Thus, there are lots of websites
and CDN nodes exposed to our RangeAmp vulnerability.

A low-cost and efficient DDoS attack. Unlike other DDoS
attacks that need to control a large scale of botnets, the attacker
only needs an ordinary laptop to launch the RangeAmp

8

attacks. The ingress nodes of CDNs are scattered around the
world, coming into a natural distributed ‘botnet’. This makes
a RangeAmp attacker able to easily congest the target network
and even create a denial of service in seconds, while the
attacker pays a small cost.

A great monetary loss to the victims. Most CDNs charge
their website customers by traffic consumption, including Aka-
mai, Alibaba Cloud, Azure, CDN77, CDNsun, CloudFront,
Fastly, Huawei Cloud, KeyCDN, Tencent Cloud [17]–[21].
When a website is hosted on a vulnerable CDN, its opponent
can abuse the CDN to perform a RangeAmp attack against it,
causing a very high CDN service fee to the website.

A security challenge to anti-DDoS. Traditional DDoS
attacks that consume bandwidth mainly target the victim’s
incoming bandwidth. Instead, The RangeAmp attacks mainly
consume the victim’s outgoing bandwidth. This will pose a
security challenge to the detection of DDoS attacks. As shown
in Section V-D, when we abuse a CDN to perform an SBR
attack, the vulnerable CDN raises no alert under its default
configuration.

VI. DISCUSSION

In this section, we will further discuss the ethics of our
experiments, the root cause of RangeAmp vulnerabilities, and
the mitigation solutions.

A. Ethic Consideration
When conducting real-world experiments to validating and

evaluating the RangeAmp attacks, our primary concern is
that when our experiments consume too much bandwidth,
it may degrade the CDN’s network performance and cause
collateral damage to other CDN-hosted websites. Thus, we
have considered this ethical concern from the beginning.

First, we conduct controlled experiments to limit bandwidth
consumption in both time and volume dimensions. In the 1st
and 2nd experiments, we only send one range request to the
CDN each time, which hardly affects the CDN’s performance.
In the 3rd experiment, our target resource size is just 1KB,
which will not generate excessive traffic in the fcdn-bcdn
connection after being enlarged. In the 4th experiment, we
send all requests to completely different ingress nodes of the
CDN to minimize or avoid real impacts on the performance
of specific nodes. And we sustain our experiment for only 30
seconds each time to keep the bandwidth consumption as little
as possible.

Second, in our responsible disclosure, we unveiled our
experiment details and vulnerability reproduction to the cor-
responding CDNs. They responded positively and are in the
progress of reviewing and fixing the threats. Besides, we also
contacted the editors of RFC7233, and they advised us to
discuss the RangeAmp threats in the mail list of the HTTP
working group. We hope that our work contributes to the
security improvement of HTTP.

In summary, we make our best effort to achieve a balance
between the real-world severity evaluation and the risk of
impacting CDNs. And we believe our work’s beneficence
outweighs the damage we cause.

B. Root Cause Analysis

The range request mechanism is defined in RFC2616 [7].
This specification states that “HTTP/1.1 origin servers and
intermediate caches ought to support byte ranges when pos-
sible”. It explicitly specifies that if a proxy supporting range
requests receives a range request, forwards the request to an
inbound server, and receives an entire entity, it should only
return the requested range to its client. And this is the only
description related to a CDN environment.

RFC2616 is updated and published as several new RFCs
(RFC7230-7239) in 2014, and the range request mechanism
is specifically defined in RFC7233 [2]. Involving a CDN
environment, RFC7233 only states that “origin servers and
intermediate caches ought to support byte ranges when possi-
ble”. Besides, RFC7233 adds some security considerations for
multi-range requests, suggesting the server to ignore, coalesce
or reject range requests with more than two overlapping ranges
or many small ranges in the Range header.

However, there are no additional illustrations on range
requests in the newest HTTP/2 protocol [8], which just cites
the definition in HTTP/1.1, “the specification and require-
ments of HTTP/1.1 Range Requests [RFC7233] are applicable
to HTTP/2”. And we find that the RangeAmp threats in
HTTP/1.1 are also applicable to HTTP/2.

As described above, RFC2616 has no security considera-
tions for the range request mechanism. It has no restrictions
on multi-range requests and even explicitly allows inconsistent
response sizes between the front-end and the back-end connec-
tions of a proxy. RFC7233 realizes that the range-introduced
efficiency could also bring DoS attacks against the server and
gives some suggestions on multi-range requests. However, it
does not clearly define how CDNs should handle a Range
header. Even worse, RFC7540 fully refers to the definition of
range requests in HTTP/1.1, without any other illustration. As
a result, each CDN has its own implementation on how to
handle range requests, leading to the SBR attack. Moreover,
RFC7233 has already warned about the threat caused by
overlapping byte ranges but some CDNs ignore it, causing
the OBR attack.

Root cause: In summary, we think that the unclear defi-
nition and security negligence of the specifications constitute
the root cause of RangeAmp vulnerabilities, and the imple-
mentation flaws of CDNs greatly worsen it.

C. Mitigation

Server side: Enforce local DoS defense. After deploying a
CDN, customer websites are under the well-advertised DDoS
protections of the CDN. However, our RangeAmp attacks can
nullify this kind of protection. When suffering a RangeAmp
attack, the origin server can deploy a local DoS defense
(e.g. filtering requests, limiting bandwidth, etc) for temporary
mitigation. But this does not necessarily work. From the
perspective of the origin server, attack requests are no different
from benign requests and come from widely distributed CDN
nodes. It is difficult for the origin server to defend against it
effectively without affecting normal services.

9

CDN side: Modify the specific implementation on range
requests. CDNs can detect and intercept malicious range
requests based on the characteristics of the RangeAmp attacks.
But the essential approach is to improve the policy of handling
the Range header. As described in Section IV-B, the Dele-
tion policy and the Expansion policy cause the SBR attack.
Therefore, CDNs can adopt the Laziness policy to completely
defend against the SBR attack. But this also makes CDNs
unable to benefit from range requests. A better way is to adopt
the Expansion policy but not extend the byte range too much.
For example, it is acceptable to increase the byte range by
8KB, which will not cause too much traffic difference between
the CDN’s front-end and back-end connections. In addition,
CDNs should follow the security recommendations on multi-
range requests in RFC7233, such as rejecting range requests
with many small ranges or multiple overlapping ranges in
the Range header. Furthermore, as an important part of the
Internet infrastructure, we believe CDNs should perform a full
security evaluation before supporting new protocol features.

Protocol side: Revise a well-defined and security-aware
RFC. As discussed in Section VI-B, the unclear definitions
and insufficient security considerations of the specifications
essentially cause RangeAmp threats. Thus, we contacted the
editors of RFC7233 and they agreed that this kind of attack
should be mentioned as a security consideration. According
to their suggestions, we will continue to discuss this threat on
the mailing list of the HTTP working group. We think that a
more specific limit of the Range header should be defined in
a future updated RFC, especially for the HTTP middle-boxes
like CDNs.

VII. RESPONSIBLE DISCLOSURE

A. Response from CDN vendors

All vulnerabilities found in our study have been reported to
related CDN vendors. We actively contacted vendors one by
one more than one month before the paper was submitted. We
provided them mitigation solutions to eliminate the detected
threats. Most vendors quickly confirmed the vulnerabilities and
claimed to fix them as soon as possible. Some vendors have
indeed fixed the vulnerabilities, including CDN77, Huawei
Cloud, G-Core Labs, and Tencent Cloud. Unfortunately, al-
though we disclosed RangeAmp issues to StackPath in several
ways, including the StackPath Support platform, email, and
customer services, we did not receive any feedback. (Six
months later, StackPath contacted us and explained that they
had responded quickly to our reported RangeAmp attacks, but
their mail system failed to send their feedback to us. They
claimed to deploy a fix across all StackPath edge locations to
mitigate the OBR attack. And they will continue to monitor
and evaluate RangeAmp attacks.)

In general, we have tried our best to responsibly report the
vulnerabilities and provide mitigation solutions. The related
vendors will have about seven months to implement mitigation
techniques before this paper is published. And they have the
duty to inform their customers about the vulnerabilities.

The responses from CDN vendors are summarized below:

Cloudflare appreciated our work and discussed the vulner-
abilities with us in detail. They thought that the SBR attack
relies on constantly triggering a cache-miss and a customer
can add a page rule to ignore query strings. But this does
not solve the problem fundamentally. The malicious customers
and some normal customers will not follow this suggestion.
Unfortunately, they won’t implement our mitigation solutions
because Cloudflare does not want to cache partial re-
sponses of certain resources. And they insisted that they are
not deviating away from the specifications. But Cloudflare now
seems to have improved its DDoS detection mechanism.

Huawei Cloud evaluated the issue as a high-risk vulnerabil-
ity. They viewed it as indeed a problem for the CDN industry
and contacted us actively to discuss how to defend against it.
And they have now fixed the related vulnerabilities.

CDN77 thanked us for our research. To defend against the
OBR attack, they have created a detection for overlapping
ranges and such requests will be denied. Besides, they are
now moving to disable the Range header to mitigate the SBR
attack and try implementing slicing of range requests.

G-Core Labs determined that the vulnerabilities exist on
their service and contacted us actively to discuss mitigation
options. To defend against the SBR attack, they eventually
chose to make the “slice” option enabled by default, which
adopts the Laziness policy to handle the Range header.

Tencent Cloud confirmed that their implementation is
vulnerable to the SBR attack. And they have fixed it now.

Akamai acknowledged that the Azure case of Akamai is
indeed problematic. They said that the Azure configurations
may override the origin configurations of Akamai and this
issue should be fixed on the Azure side. Anyway, they claimed
to look into this problem promptly.

CloudFront admitted the methods used to optimize caching
of range requests indeed increase bytes requested from the
origin. They claimed to investigate how to prevent multi-range
requests from increasing any more traffic than single-range
requests. Besides, they claimed that they have safeguards to
prevent excessive back-to-origin requests.

CDNsun claimed that they would mitigate the OBR attack
by limiting the number of ranges or rejecting overlapping
range requests. But they insisted that they don’t have a proper
technical solution to the SBR attack, although we introduced
some mitigation options to them.

Fastly expressed appreciation for our study and informed
us that they are investigating to validate the attack scenarios,
explore the effectiveness of mitigation already available, and
develop new capabilities to manage the risk of this attack.

Azure confirmed that the attack is feasible, but only in cer-
tain circumstances. They insisted that if a customer configures
the options to ignore query strings then the attack will be
mitigated. But as we discussed with Cloudflare, a malicious
customer won’t follow the security best practices. And some
normal customers won’t do so as well.

Alibaba Cloud confirmed that their implementation is
vulnerable to the SBR attack. They are currently fixing it.

10

KeyCDN thanked us for our report but claimed that they
have already been aware of this issue.

B. Response from the RFC editor

We also contacted the honored editors of RFC7233 with
email and Roy T. Fielding replied that “it’s the CDN’s re-
sponsibility to manage its back-end behavior regardless of the
protocols used to access it”. But he also said that “I agree
that this kind of attack should be mentioned as a security
consideration” and “we can warn about certain effects and
kinds of attack”. He suggested we discuss this threat on the
mailing list of the HTTP working group.

VIII. RELATED WORK

HTTP Range Security. To the best of our knowledge,
there is no academic literature discussing the security risks
introduced by range requests in a CDN environment. Accord-
ing to the CVE platform, there are about 20 vulnerabilities
related to range requests. All of them are related to improper
implementations but have nothing to do with CDNs. For
instance, CVE-2017-7529 [22] presents an integer overflow
caused by Nginx’s incorrect processing with the Range field.
And CVE-2011-3192 [13] presents a DoS attack using a
Range header with multiple ranges to exhaust memory on
the Apache server. Our RangeAmp attacks mainly exploit the
asymmetrical traffic consumption in the front-end and back-
end connections of a CDN, which is quite different from these
vulnerabilities.

CDN Security. As an important part of the Internet in-
frastructure, CDN security has been well researched. Due to
the DDoS protection provided by CDNs, attackers are highly
interested in finding out the origin IP of the target website.
There are some methods based on information leaks to expose
the sensitive information of the origin server [6], [9]. In
comparison, our RangeAmp attacks can directly nullify the
DDoS protection of a vulnerable CDN and abusing the CDN
to attack the origin server. Triukose et al [5] proposed an attack
of exhausting the bandwidth of the origin server by rapidly
dropping the front-end connections. We evaluated this attack
and found that most CDNs can mitigate it. They will break
the corresponding back-end connections when the front-end
connections are abnormally cut off. However, this defense is
invalid under our RangeAmp attacks. Furthermore, CDNs can
also become the victim, and in the forwarding-loop attacks
proposed by Chen et al [3], an attacker can chain CDN nodes
into a loop, causing the malicious request to be processed
repeatedly and reducing CDN’s availability. Differently, our
RangeAmp attacks present a novel method to perform an
amplification attack against specific ingress nodes of CDNs.
Some studies show that the global distribution and massive
nodes of a CDN also facilitate malicious CDN customers
to abuse the CDN [23]–[25]. And CDN’s mappings between
clients and surrogates can also be maneuvered with crafted
DNS records [26]. Compared to previous researches related
to CDNs, we propose a novel class of amplification attacks
and conduct a real-world security evaluation with 13 popular

CDNs. Indeed, we provide a complement to existing CDN
security research.

Amplification Attacks. Amplification attacks have also
long been well studied. Booth et al [27] reveal that, by
recruiting UDP servers on the Internet as the reflectors, a
UDP amplification attack can reach an amplification factor
of 556. Sieklik et al [28] further analyze the DNSSEC based
amplification attack, which leads to an amplification factor
of 44. Besides the UDP protocol, the TCP protocol can
also be abused. Anagnostopoulos et al [29] study the TFTP
amplification attack with an amplification factor of 60. Kührer
et al [30] gave an in-depth analysis of the TCP reflection attack
across famous TCP services, eg, HTTP, MySQL, and POP3
services. Further, Kührer et al [31] also reveals that the NTP
service can lead to an amplification factor of 4670. In 2015,
Krämer et al [32] designed a novel honeypot to track and
analyze these types of amplification attacks. Compared with
these previous amplification attack studies, our RangeAmp
attack can reach a much larger amplification factor. More
importantly, when the target website is hosted behind a CDN,
the CDN can defend against all amplification attacks of
previous studies. However, a RangeAmp attacker can nullify
the DDoS protection provided by CDNs and achieve severe
amplification damage against the CDN-hided website server.

In brief, our study reveals that the Range header can be ex-
ploited to perform a novel class of amplification attacks against
the websites hosted on CDNs and the ingress nodes of CDNs.
This attack nullifies the CDN-provided DDoS protections and
poses a severe threat to the Internet security ecosystem.

IX. CONCLUSION

We have presented the principles of the RangeAmp vulner-
ability, along with a comprehensive study of its practicality
in the wild. We find that the 13 popular CDNs tested are all
vulnerable. The unclear definition and security negligence of
the specifications are the root cause, and the implementation
flaws of CDNs further worsen this vulnerability. We believe
that the RangeAmp attacks will pose severe threats to the
serviceability of CDNs and the availability of websites. We
hope that our study will provide insight into this vulnerability
and help the potentially relevant victims to fully understand
them. In the short term, we suggest that the CDNs and websites
adopt one or more of the mitigation solutions discussed in our
paper. In the longer term, we think that a more specific limit
of range requests should be defined in a future updated RFC,
especially for the HTTP middle-boxes like CDNs.

ACKNOWLEDGEMENT

Special thanks are expressed to our shepherd Marc Dacier
and the anonymous reviewers for their insightful comments,
which contributed to a great improvement of our paper. We
also thank the RFC7233’s editor Roy T. Fielding and all related
CDN vendors for their valuable feedback. Last but not least,
we gratefully acknowledge the help of our friend Wenchang
Ma, who spent lots of time correcting our grammar mistakes.

11

REFERENCES

[1] Data Economy, “Data economy frontline. how close you
need to be to edge data?” https://data-economy.com/
data-economy-frontline-how-close-you-need-to-be-to-edge-data/,
[Accessed Dec. 2019].

[2] R. T. Fielding, Y. Lafon, and J. F. Reschke, “Hypertext transfer protocol
(HTTP/1.1): range requests,” RFC, vol. 7233, pp. 1–25, 2014.

[3] J. Chen, X. Zheng, H. Duan, J. Liang, J. Jiang, K. Li, T. Wan, and
V. Paxson, “Forwarding-loop attacks in content delivery networks,”
in 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016. The Internet Society, 2016.

[4] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson, “Host
of troubles: Multiple host ambiguities in HTTP implementations,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1516–1527.

[5] S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Content delivery net-
works: Protection or threat?” in Computer Security - ESORICS 2009,
14th European Symposium on Research in Computer Security, ser.
Lecture Notes in Computer Science, vol. 5789. Springer, 2009, pp.
371–389.

[6] T. Vissers, T. van Goethem, W. Joosen, and N. Nikiforakis, “Maneu-
vering around clouds: Bypassing cloud-based security providers,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1530–1541.

[7] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J.
Leach, and T. Berners-Lee, “Hypertext transfer protocol - HTTP/1.1,”
RFC, vol. 2616, pp. 1–176, 1999.

[8] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol
version 2 (HTTP/2),” RFC, vol. 7540, pp. 1–96, 2015.

[9] L. Jin, S. Hao, H. Wang, and C. Cotton, “Your remnant tells se-
cret: Residual resolution in ddos protection services,” in 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2018. IEEE Computer Society, 2018, pp. 362–373.

[10] ——, “Unveil the hidden presence: Characterizing the backend interface
of content delivery networks,” in 27th IEEE International Conference
on Network Protocols, ICNP 2019. IEEE, 2019, pp. 1–11.

[11] Datanyze, “Content delivery networks market share report,” https://www.
datanyze.com/market-share/cdn/, [Accessed Dec. 2019].

[12] Rapid7, “Apache range header dos (apache killer),” https://www.rapid7.
com/db/modules/auxiliary/dos/http/apache range dos, [Accessed Dec.
2019].

[13] cve.mitre.org, “Cve-2011-3192,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2011-3192, [Accessed Oct. 2019].

[14] R. Guo, W. Li, B. Liu, S. Hao, J. Zhang, H. Duan, K. Shen, J. Chen,
and Y. Liu, “Cdn judo: Breaking the cdn dos protection with itself,”
NDSS’20, 2020.

[15] D. Senecal, “Slow dos on the rise,” https://blogs.akamai.com/2013/09/
slow-dos-on-the-rise.html, [Accessed Oct. 2018].

[16] Cloudflare, “Slowloris ddos attack,” https://www.cloudflare.com/
learning/ddos/ddos-low-and-slow-attack, [Accessed Oct. 2018].

[17] CDNPerf, “Cdn calculator - cdncalc - cdnperf,” https://www.cdnperf.
com/tools/cdn-calculator, [Accessed Dec. 2019].

[18] CDNsun, “Best cdn solutions at cheap price — cdn pricing,” https:
//cdnsun.com/pricing, [Accessed Dec. 2019].

[19] Alibaba Cloud, “Cdn (content delivery network) pricing & purchasing
methods - alibaba cloud,” https://www.alibabacloud.com/product/cdn/
pricing?spm=a3c0i.7938564.220486.75.26d62aecnaGFXf, [Accessed
Dec. 2019].

[20] HUAWEI CLOUD, “Price calculator-huawei cloud,” https://intl.
huaweicloud.com/en-us/pricing/index.html?tab=detail#/cdn, [Accessed
Dec. 2019].

[21] Tencent Cloud, “Pricing center - tencent cloud,” https://intl.cloud.
tencent.com/pricing/cdn, [Accessed Dec. 2019].

[22] M. Dounin, “Cve-2017-7529,,” http://mailman.nginx.org/pipermail/
nginx-announce/2017/000200.html, [Accessed Oct. 2019].

[23] J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chinese
censorship without proxies using cached content,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 70–83.

[24] H. Zolfaghari and A. Houmansadr, “Practical censorship evasion lever-
aging content delivery networks,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2016, pp. 1715–1726.

[25] R. Guo, J. Chen, B. Liu, J. Zhang, C. Zhang, H. Duan, T. Wan,
J. Jiang, S. Hao, and Y. Jia, “Abusing cdns for fun and profit: Security
issues in cdns’ origin validation,” in 37th IEEE Symposium on Reliable
Distributed Systems, SRDS 2018. IEEE Computer Society, 2018, pp.
1–10.

[26] S. Hao, Y. Zhang, H. Wang, and A. Stavrou, “End-users get maneuvered:
Empirical analysis of redirection hijacking in content delivery networks,”
in 27th USENIX Security Symposium, USENIX Security 2018. USENIX
Association, 2018, pp. 1129–1145.

[27] T. G. Booth and K. Andersson, “Elimination of dos UDP reflection
amplification bandwidth attacks, protecting TCP services,” in Future
Network Systems and Security - First International Conference, ser.
Communications in Computer and Information Science, vol. 523.
Springer, 2015, pp. 1–15.

[28] B. Sieklik, R. Macfarlane, and W. J. Buchanan, “Evaluation of TFTP
ddos amplification attack,” Comput. Secur., vol. 57, pp. 67–92, 2016.

[29] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis,
and S. Gritzalis, “DNS amplification attack revisited,” Comput. Secur.,
vol. 39, pp. 475–485, 2013.

[30] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a handshake:
Abusing TCP for reflective amplification ddos attacks,” in 8th USENIX
Workshop on Offensive Technologies, WOOT ’14. USENIX Association,
2014.

[31] ——, “Exit from hell? reducing the impact of amplification ddos
attacks,” in Proceedings of the 23rd USENIX Security Symposium.
USENIX Association, 2014, pp. 111–125.

[32] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and
C. Rossow, “Amppot: Monitoring and defending against amplification
ddos attacks,” in Research in Attacks, Intrusions, and Defenses - 18th
International Symposium, RAID 2015, ser. Lecture Notes in Computer
Science, vol. 9404. Springer, 2015, pp. 615–636.

12

https://data-economy.com/data-economy-frontline-how-close-you-need-to-be-to-edge-data/
https://data-economy.com/data-economy-frontline-how-close-you-need-to-be-to-edge-data/
https://www.datanyze.com/market-share/cdn/
https://www.datanyze.com/market-share/cdn/
https://www.rapid7.com/db/modules/auxiliary/dos/http/apache_range_dos
https://www.rapid7.com/db/modules/auxiliary/dos/http/apache_range_dos
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3192
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3192
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-attack
https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-attack
https://www.cdnperf.com/tools/cdn-calculator
https://www.cdnperf.com/tools/cdn-calculator
https://cdnsun.com/pricing
https://cdnsun.com/pricing
https://www.alibabacloud.com/product/cdn/pricing?spm=a3c0i.7938564.220486.75.26d62aecnaGFXf
https://www.alibabacloud.com/product/cdn/pricing?spm=a3c0i.7938564.220486.75.26d62aecnaGFXf
https://intl.huaweicloud.com/en-us/pricing/index.html?tab=detail#/cdn
https://intl.huaweicloud.com/en-us/pricing/index.html?tab=detail#/cdn
https://intl.cloud.tencent.com/pricing/cdn
https://intl.cloud.tencent.com/pricing/cdn
http://mailman.nginx.org/pipermail/nginx-announce/2017/000200.html
http://mailman.nginx.org/pipermail/nginx-announce/2017/000200.html

