
ZKCPlus: Optimized Fair-exchange Protocol
Supporting Practical and Flexible Data Exchange
Yun Li

Tsinghua University
liyun19@mails.tsinghua.edu.cn

Cun Ye
K-Orange/SECBIT Labs

cun.ye@secbit.io

Yuguang Hu
SECBIT Labs

yuguang.hu@outlook.com

Ivring Morpheus
SECBIT Labs

ivring.morpheus@gmail.com

Yu Guo
SECBIT Labs

yu.guo@secbit.io

Chao Zhang�
Tsinghua University

chaoz@tsinghua.edu.cn

Yupeng Zhang
Texas A&M University
zhangyp@tamu.edu

Zhipeng Sun
SECBIT Labs
zp@secbit.io

Yiwen Lu
SECBIT Labs
even@secbit.io

Haodi Wang
Beijing Normal University
whd@mail.bnu.edu.cn

Abstract
Devising a fair-exchange protocol for digital goods has been an
appealing line of research in the past decades. The Zero-Knowledge
Contingent Payment (ZKCP) protocol first achieves fair exchange
in a trustless manner with the aid of the Bitcoin network and zero-
knowledge proofs. However, it incurs setup issues and substantial
proving overhead, and has difficulties handling complicated valida-
tion of large-scale data.

In this paper, we propose an improved solution ZKCPlus for
practical and flexible fair exchange. ZKCPlus incorporates a new
commit-and-prove non-interactive zero-knowledge (CP-NIZK) ar-
gument of knowledge under standard discrete logarithmic assump-
tion, which is prover-efficient for data-parallel computations. With
this argument we avoid the setup issues of ZKCP and reduce seller’s
proving overhead, more importantly enable the protocol to handle
complicated data validations.

We have implemented a prototype of ZKCPlus and built several
applications atop it. We rework a ZKCP’s classic application of trad-
ing sudoku solutions, and ZKCPlus achieves 21-67× improvement
in seller efficiency than ZKCP, with only milliseconds of setup time
and 1 MB public parameters. In particular, our CP-NIZK argument
shows an order of magnitude higher proving efficiency than the
zkSNARK adopted by ZKCP. We also built a realistic application of
trading trained CNNmodels. For a 3-layer CNN containing 8,620 pa-
rameters, it takes less than 1 second to prove and verify an inference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484558

computation, and also about 1 second to deliver the parameters,
which is very promising for practical use.

CCS Concepts
• Security and privacy→ Cryptography.

Keywords
fair exchange; zero-knowledge argument; commit-and-prove

ACM Reference Format:
Yun Li, Cun Ye, Yuguang Hu, Ivring Morpheus, Yu Guo, Chao Zhang, Yu-
peng Zhang, Zhipeng Sun, Yiwen Lu, and Haodi Wang. 2021. ZKCPlus:
Optimized Fair-exchange Protocol Supporting Practical and Flexible Data
Exchange . In Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’21), November 15–19, 2021, Vir-
tual Event, Republic of Korea. ACM, New York, NY, USA, 20 pages. https:
//doi.org/10.1145/3460120.3484558

1 Introduction
Building a fair protocol for exchanging digital goods has been
studied for a long time. It has been proved that strong fairness is
unattainable without the aid of trusted third parties [45]. In practice
these trusted parties are often centralized organizations, which
bring them all kinds of risks, including single point of failure [22],
user information misuse [20], etc.

The advent of blockchain offers new possibilities. In 2011, Gre-
gory Maxwell proposed the first blockchain-based fair exchange
solution, Zero-Knowledge Contingent Payment (ZKCP) [43]. By
incorporation of Bitcoin [44] network and zero-knowledge proofs,
it is able to achieve fair exchange of digital goods and currencies
in one atomic swap. In ZKCP, a buyer B wants to purchase from a
seller S a piece of digital good x which satisfies a particular predi-
cate 𝜙(x) = 1. To this end, S first chooses a secret key k to encrypt
the data x using an encryption scheme Enc, i.e., z ← Enck(x). Next,
S constructs a “hash lock” h = H(k) with a cryptographic hash

https://doi.org/10.1145/3460120.3484558
https://doi.org/10.1145/3460120.3484558
https://doi.org/10.1145/3460120.3484558

Table 1: Performance of ZKCP on a 16×16 sudoku solution
Size of proving key 68 MB

Proving time 10-20 s
Verification time 40 ms

Proof size 288 B

Circuit cost
Encryption 86.81%
SHA256 hash 10.23%

Solution validity 4.42%

function H, and a zero-knowledge proof 𝜋 for the NP statement

Enck(x) = z ∧ 𝜙(x) = 1 ∧ H(k) = h.

Then S delivers (z, h,𝜋) to B. On verifying the proof, B submits
a hash-locked payment to the blockchain, saying that only the
one who discloses a correct key w.r.t. the hash h can redeem this
payment. S then reveals k and thus gets the payment from the
blockchain; B decrypts the ciphertext with k and recovers x. The
blockchain acts as an impartial arbiter, and the exchange ultimately
happens in S’s atomic action of revealing k.

As a seminal work, ZKCP demonstrates the great potential of
blockchains in replacing traditional trusted third parties, but it
also has some notable limitations. In 2016, the protocol was first
implemented for trading solutions to sudoku puzzles. The imple-
mentation adopts a simple stream cipher from SHA256, and uses
the Pinocchio/BCTV14 zkSNARK scheme [7, 46] for the underlying
zero-knowledge proofs. Table 1 presents the performance statistics
on a 16×16 sudoku solution from the ZKCP developers [8]. We have
three main observations from the statistics.

First, the trusted setup of the zkSNARK incurs security issues and
high overhead. The Pinocchio/BCTV14 zkSNARK requires a trusted
party to generate a common reference string (CRS), which con-
tradicts ZKCP’s very goal of eliminating trusted third parties. As
a circumvent, ZKCP entrusts the buyer to produce the CRS, but
this is proved to be insecure [13, 25] as it compromises the zero-
knowledge property. Moreover, the CRS is cumbersome that even
for a 16×16 sudoku solution which costs only 256 bytes, the size of
the proving key in the CRS reaches 68 MB.

Second, the system’s performance is limited by the seller’s proving
procedure. With Pinocchio/BCTV14 zkSNARK, for trading a 16×16
sudoku solution the verification time is only 40 ms, but the proving
time gets to 10-20 seconds. The bottleneck of the whole system lies
on the prover (seller) side. Besides, the proof succinctness is not
very helpful in ZKCP context, given that the sub-linear-size proof
𝜋 is transferred off chain along with the linear-size ciphertext z. To
improve the overall performance of ZKCP, it’s critical to cut down
the seller’s proving overhead.

Third, it has difficulties validating complicated predicates on large-
scale data. In trading sudoku solutions, the predicate for solution
validity is very simple (as its related constraints amount to only
4.42% of the whole circuit, while the rest are for encryption and hash
lock). However in practice, predicates can be arbitrarily compli-
cated, possibly involving large-scale data-parallel computations or
interactive decision-making processes. A typical example is to trade
a trained neural networkmodel in aMachine-Learning-as-a-Service
(MLaaS) scenario, where the predicate is that the model yields suf-
ficiently high accuracy on a test set chosen by the buyer, which
translates into multiple rounds of variable inference processes. As

previous work [41] evaluated, with Groth16 zkSNARK [32] (an op-
timization of Pinocchio/BCTV14 zkSNARK), the prover takes 45
minutes to prove for a single inference process of a 5-layer convo-
lutional neural network (CNN) LeNet-5 [39] with the setup time
up to 1.5 hours and CRS size up to 11 GB. Clearly it is impractical
for ZKCP to handle such predicates.

In this work we propose ZKCPlus, an extended version of ZKCP
which supports practical and flexible fair exchange of large-scale
digital goods. We make several major modifications to ZKCP to
address the aforementioned problems. Specifically, we replace the
Pinocchio/BCTV14 zkSNARK of ZKCPwith prover-efficient commit-
and-prove non-interactive zero-knowledge (CP-NIZK) arguments of
knowledge, and design a CP-NIZK argument scheme optimized for
data-parallel computations based on the standard discrete logarith-
mic assumption. It replaces the costly and insecure trusted setup
of ZKCP with a lightweight public setup phase, and by incorpora-
tion of a circuit-friendly block cipher in a data-parallel encryption
mode (i.e., counter mode), it greatly reduces seller’s proving over-
head. With the commit-and-prove feature, we can further reduce
proving overhead by replacing the hash lock of ZKCP with a com-
mitment lock on the blockchains supporting commitment opening
like Ethereum [54] More importantly, utilizing CP-NIZK arguments’
powerful capability of composition [12, 14, 16], ZKCPlus can han-
dle excessively complicated predicates, especially those involving
large-scale data-parallel computations.

Our CP-NIZK argument for data-parallel computations builds on
the fact that all parallelized sub-circuits have exactly identical rank-
1 constraint systems, and thus the satisfiability of the whole circuit
can be reduced to a more concise relation which can be handled
with the techniques in [11, 31]. Concerning prover efficiency, our
construction is several times faster than Groth16 zkSNARK [32],
and comparable to the non-succinct version of SpartanDL [49].

The ZKCPlus protocol supports a broad class of applications. Be-
sides the toy application of “pay to sudoku solution” demonstrated
by ZKCP, it also applies to more realistic scenarios, including (but
not limited to) tradings of convolutional neural networks, struc-
tured query results over databases, mathematical statistics and so
on. We have implemented the ZKCPlus protocol, built the applica-
tions, and evaluated their performances. For the “pay to sudoku
solution” application, on an ordinary desktop computer, the seller
of ZKCP runs out of memory when the size of sudoku solution gets
larger than 49×49. As a contrast, ZKCPlus successfully handles all
solutions up to 256×256, and reduces the seller’s proving overhead
by 21-67×, with only milliseconds of setup time and about 1 MB
public parameters. Even under the same encryption scheme, our
CP-NIZK argument still shows an order of magnitude higher prover
efficiency than the zkSNARK adopted by ZKCP. In the “pay to CNN
model” application where ZKCPlus is applied to trading trained
CNN models, the two parties can finish proving for an inference
process of a 3-layer CNN with 8,620 parameters in about 1 s, and
then finish delivering all these parameters within about 1 s as well.
The application scales up to deep CNNs; on the well-known 16-layer
VGG16 [50] model which contains about fifteen million parameters,
ZKCPlus yields a practically acceptable overhead, which highlights
a great advancement over ZKCP. We also build a “pay to SQL query”
application for trading SQL query results on databases; the two

parities can finish trading all the results of a sub-string selection
over 100,000 records in several seconds.

In summary, we make the following contributions:

• We propose ZKCPlus, an extended and optimized version of
ZKCP, which supports efficient and versatile fair-exchange appli-
cations on large-scale data. With a new prover-efficient CP-NIZK
argument of knowledge, ZKCPlus features light-weighted public
setup phase and low seller’s proving overhead, and is capable of
supporting very complicated predicates.
• We build a prototype of ZKCPlus and develop several applica-
tions upon it, including a practical “pay to CNN model” appli-
cation. Evaluations demonstrate the excellent performance of
ZKCPlus, vastly surpassing the original ZKCP in many aspects.

2 Preliminaries

2.1 Notations

Let G be a cyclic group of a prime order p, and Fp be the corre-
sponding scalar field. Vectors of length n over G and Fp are de-

noted by Gn and Fnp respectively. By x
$← Fp we mean uniformly

sampling an element x from Fp . For a vector a ∈ Fnp and a scalar
c ∈ Fp we write b = c · a ∈ Fnp where b = (c · a1, . . . , c · an).
We write ⟨a, b⟩ = ∑

j∈[n] aj · bj for inner product of a and b, and
a◦b = (a1 ·b1, . . . , an ·bn) for Hadamard (entry-wise) product. Group
operations are written additively. For x ∈ Fp and G ∈ G, scalar
multiplication is denoted as x · G, and multi-scalar multiplication
is written in vector inner product form as ⟨x,G⟩.

Let R be a polynomial-time decidable relation on the pair (s,w),
where s is an NP statement, and w is the witness. We write R(s,w) =
1 if relation R holds on (s,w), and R(s,w) = 0 otherwise. When
necessary, we write out R explicitly as

{public inputs; witness|relation}.

2.2 Commitments

A non-interactive commitment scheme is a tuple of algorithms
Com = (Setup,Commit,Check) which satisfies the notion of cor-
rectness, binding and hiding (formal definitions in Appendix A.2):

• Setup(1𝜆)→ pp generates public parameter pp for the scheme
on input of security parameter 𝜆;
• Commit(pp, u)→ (c, r) takes message u in message spaceMpp,
outputs its commitment c in commitment spaceCpp and opening
randomness (blinder) r in randomness space Rpp;
• Check(pp, c, u, r)→ b takes commitment c, message u, random-
ness r , and accepts (b = 1) or rejects (b = 0).

In this work, we mostly use the Pedersen commitment [47]
scheme. Combining the scalar and vector forms, for message space
Mpp = Fnp with n ≥ 1, randomness space Rpp = Fp , and commitment
space Cpp = G, the scheme runs as

• Setup(1𝜆) → pp randomly samples H
$← G, G $← Gn from a

group G whose order is implicitly dependent on the security
parameter, and outputs pp = (H ,G);

• For vector input v, Commit(pp, v) → (V ,𝜈) samples 𝜈
$← Fp ,

and computes V = ⟨v,G⟩ + 𝜈 · H . When n = 1, the vector v
reduces to a scalar v, and V = v · G + 𝜈 · H ;

• For vector input v, Check(pp,V , v,𝜈)→ b outputs binary deci-
sion b = 1 iff V = ⟨v,G⟩ + 𝜈 · H . When n = 1, for scalar input v,
Check(pp,V , v,𝜈)→ b outputs b = 1 iff V = v · U + 𝜈 · H .

The scheme is correct, perfectly hiding and computationally bind-
ing under the discrete logarithm relation assumption defined in
Appendix A.1. In addition, the scheme is homomorphic as

Commit(pp, v1) + Commit(pp, v2) = Commit(pp, v1 + v2),

where the add operation + is define in G on the LHS and in Fp on
the RHS.

2.3 Zero-knowledge arguments of knowledge

For a polynomial-time decidable relation R and a statement s, a
zero-knowledge argument of knowledge allows prover P to demon-
strate to verifier V its knowledge of a witness w s.t. R(s,w) = 1,
and in the meanwhile reveal no information about w, except what
can be inferred from the statement s. For interactive P and V
both referring to a common reference string (CRS) 𝜎 generated
by a preliminary algorithm KeyGen, we denote their transcript as
tr← ⟨P(𝜎 , s,w),V(𝜎 , s; 𝜌)⟩, where 𝜌 denotes the verifier’s random-
ness. We write ⟨P(𝜎 , s,w),V(𝜎 , s; 𝜌)⟩ = b depending on whether
V accepts (b = 1) or rejects (b = 0).

We say the tuple Arg = (KeyGen,P,V) is an argument of knowl-
edge if it satisfies the notion of perfect completeness and compu-
tational witness-extended emulation. The argument Arg is said to
be public-coin if all messages sent byV are sampled uniformly at
random and independent of P’s messages. A public-coin Arg is
said to have special honest-verifier zero-knowledge if it is possible to
simulate the transcript for any set of challenges without accessing
the witness w. Formal definitions of these terms can be found in
Appendix A.3.

By Fiat-Shamir heuristic [24], an interactive public-coin zero-
knowledge argument Arg can be transformed into a non-interactive
zero-knowledge (NIZK) argument of knowledge, whereV’s mes-
sages are replaced by outputs of a cryptographic hash function
over the transcript up to the point. We model the resulting NIZK
argument as a tuple of algorithms Π = (KeyGen,Prove,Verify) s.t.
• KeyGen(1𝜆)→ 𝜎 generates the CRS 𝜎 on input parameter 𝜆;
• Prove(𝜎 , s,w)→ 𝜋 outputs proof 𝜋 for R(s,w) = 1;
• Verify(𝜎 , s,𝜋)→ b accepts (b = 1) or rejects (b = 0) the proof 𝜋 .
In random oracle model, the resulting Π has perfect completeness,
computational knowledge soundness and zero-knowledge (formal defi-
nitions in Appendix A.4), provided that the original interactive argu-
ment Arg has perfect completeness, computational witness-extended
emulation, and special honest-verifier zero-knowledge [4].

In Appendix B, we describe an argument for inner products for
vectors from [31], a basic building block that we use repeatedly on
various occasions throughout this work.

2.4 Commit-and-prove arguments

We adopt the notion of commit-and-prove non-interactive argu-
ments from LegoSNARK [12]. For a relation R and a commitment
scheme Com with message spaceMpp, a commit-and-prove NIZK
(CP-NIZK) argument of knowledge proves the knowledge of a wit-
nessw for a statement s s.t.R(s,w) = 1, wherew = (u, aux) splits into
a message part u ∈ Mpp which opens a specified commitment c, and
an auxiliary part aux. More specifically, it demonstrates a relation

Figure 1: Block cipher in CTR mode

RCom defined over pairs (s,w) where s = (s, c) and w = (u, r , aux),
s.t. RCom(s,w) = 1 iff

Com.Check(pp, c, u, r) = 1 ∧ R(s, (u, aux)) = 1. (1)

We model the CP-NIZK argument of knowledge as a tuple of algo-
rithms ΠCom = (KeyGen,Prove,Verify) where

• KeyGen(1𝜆)→ 𝜎 generates 𝜎 , which includes the public param-
eters of the commitment scheme pp← Com.Setup(1𝜆);
• Prove(𝜎 , (s, c), (u, r , aux)) → 𝜋 outputs proof 𝜋 for statement
s = (s, c) and witness w = (u, r , aux);
• Verify(𝜎 , (s, c),𝜋)→ b accepts (b = 1) or rejects (b = 0).

It should satisfy the notion of completeness, knowledge soundness,
and zero-knowledge as a usual NIZK argument of knowledge. In
practice, u may split into many segments. Informally, we write
u = {ui}, and they are committed as c = {ci} with blinders r = {ri}.
Correspondingly, RCom holds iff∧

i
Com.Check(pp, ci , ui , ri) = 1 ∧ R(s, ({ui}, aux)) = 1. (2)

The notion of commit-and-prove allows a “bottom-up” approach
to build arguments for composed relations. The base case is the
conjunction of relations with shared inputs. For two CP-NIZK argu-
ments of knowledge ΠCom

0 and ΠCom
1 which respectively attesting

relations R0(s0, (u, aux0)) = 1 and R1(s1, (u, aux1)) = 1, with shared
input u. It is proved that for a computationally binding commitment
schemeCom, there exists a CP-NIZK argument of knowledge ΠCom

∧
for conjunction of R0 and R1. More specifically, ΠCom

∧ works for
relation R∧ s.t R∧((s0, s1), (u, aux0, aux1)) = 1 iff

R0(s0, (u, aux0)) = 1 ∧ R1(s1, (u, aux1)) = 1. (3)

Extension to conjunctions of more than two relations is trivial. Dis-
junctions and sequential composition of functions can be reduced
to this base case as well. Refer to Appendix C for more details.

Herein we single out a special type of CP-NIZK argument de-
noted as ΠCom

link . Let ΠCom
0 and ΠCom

1 be CP-NIZK arguments of
knowledge for relation R0 and R1 s.t. R0(s0, (u0, aux0)) = 1, and
R1(s1, (u1, aux1)) = 1. Argument ΠCom

link shares input u0 with ΠCom
0 ,

input u1 with ΠCom
1 , and proves that u0 and u1 are related by an in-

terlinking function f s.t. f (u0, u1) = 0. By composability of CP-NIZK
arguments, ΠCom

0 , ΠCom
1 and ΠCom

link jointly prove the relation

R0(s0, (u0, aux0)) = 1 ∧ R1(s1, (u1, aux1)) = 1 ∧ f (u0, u1) = 0. (4)

Therefore, ΠCom
link acts as an adaptor between ΠCom

0 and ΠCom
1 . With

ΠCom
link , it is possible to assemble small CP-NIZK arguments together,

and build an argument that works for very complicated relations.

2.5 Rank-1 constraint system

Rank-1 Constraint System (R1CS) extends the notion of Quadratic
Arithmetic Program (QAP) [27], and offers a convenient description
for arithmetic circuits. For a circuit of size m (containing m multi-
plication gates), its corresponding R1CS is written as {A,B,C, s;w},
where A,B,C ∈ Fm×lp are the coefficient matrices, s represents the
public input, and w the witness for the circuit. An assignment
x = (1, s,w) ∈ Flp satisfies the circuit iff

Ax ◦ Bx = Cx. (5)

For simplicity, in the following we shall assume m = l.

2.6 MiMC block cipher

MiMC [1] is a family of symmetric cryptographic primitives that
works natively in finite fields. In particular,MiMC-p/p is a block
cipher Ck(·) operating over a prime field Fp , constructed by embed-
ding a non-linear permutation F (x) = xd for x ∈ Fp in its round func-
tion, where the exponent d satisfies the condition gcd(d, p – 1) = 1.
For each round, the round function is defined as Fi(x) = F (x + k + ci),
where k denotes the encryption key, and ci a round constant. The
number of rounds should be sufficiently large to thwart the interpo-
lation attacks [36]. The block cipher is arithmetic circuit friendly;
for example, it promises 129-bit security with only 82 multiplica-
tions in Fp .

We use theMiMC-p/p block cipher in the counter (CTR) mode.
An arbitrary input message x is encoded as a vector over Fp of
length n. With key k, x ∈ Fnp is encrypted into ciphertext z ∈ Fnp ,
whose i-th element is computed by

zi = xi + Ck(ctri), (6)

where counter ctri is offset by a random nonce, ctri = nonce+ i, and
the operation + is defined in Fp . Collectively, we write z = Enck(x).

2.7 Blockchain and smart contract

Bitcoin [44] is a decentralized ledger system jointly maintained
by indefinite number of nodes via a peer-to-peer consensus pro-
tocol. If a majority of the nodes honour the protocol, the ledger
is ensured correctness without any centralized coordination. On
Bitcoin blockchain, users’ currencies and transactions are managed
by simple Bitcoin scripts with limited functionalities.

Going one step further, Ethereum [54] extends the ledger to
a “world state” consisting of rich variables, which can be modi-
fied by code called “smart contracts”. A smart contract consists of
global variables and functions, and the functions can be invoked by
Ethereum users or other contracts reactively. The miners execute
the invoked functions to update the global state of the ledger. In con-
trast with the limited Bitcoin scripts, smart contracts on Ethereum
support Turing complete language. In particular, it allows elliptic
curve operations, so on-chain Pedersen commitment opening is
made easy.

3 Building block: CP-NIZKargument for data-parallel
computations

In this section, we focus on the construction of an efficient CP-NIZK
argument for data-parallel circuits. We say an arithmetic circuit is
data-parallel if it consists of multiple copies of identical sub-circuits
running on separated inputs. This argument is a core building block
for our ZKCPlus protocol.

3.1 Argument construction

Consider a data-parallel circuit consisting of n identical sub-circuits,
and each sub-circuit is of size m. Instead of constructing a large
R1CS for the whole circuit of size n ×m, we use R1CS for the sub-
circuit of size m and apply it to n assignments. Specifically, we
define matrix

X = [x1, . . . ,xn] ∈ Fm×np , (9)
where xk is the assignment to the k-th sub-circuit. The satisfiability
relation for the whole circuit can be stated concisely as

AX ◦ BX = CX. (10)

Instead of interpreting X as a collection of n columns of xk ∈ Fmp ,
each of length m, henceforth we view it as a stack of m row vectors
each of length n. We denote the row vectors as vj ∈ Fnp for j ∈ [m].
They are divided into two categories, those corresponding to public
inputs (statement) with j ∈ pub, and those for P’s private inputs
(witness) with j ∈ priv, where pub ∪ priv = [m]. We reformulate
the satisfiability relation of (10) as m identities about Hadamard
products, namely

(A,B,C) ∈ Fm×mp ,
{vj ∈ Fnp}j∈pub;
{vj ∈ Fnp}j∈priv

ai =
∑

j∈[m] Aij · vj ,
bi =

∑
j∈[m] Bij · vj ,

ci =
∑

j∈[m] Cij · vj ,∧
i∈[m] ai ◦ bi = ci

, (11)

where Mij denotes an element of matrixM with row and column
indices i and j forM ∈ {A, B,C}. We build an interactive protocol for
this relation using techniques in [11, 31]. The details are in Figure 2.

The protocol relies on the Pedersen commitment scheme Com
as described in Section 2.2. In a nutshell, it involves a prover P com-
mitting vj as Vj . With Vj the verifierV can compute commitments
to ai , bi , ci utilizing the homomorphic property of Com as

Ai =
∑
j∈[m]

Aij · Vj , Bi =
∑
j∈[m]

Bij · Vj , Ci =
∑
j∈[m]

Cij · Vj . (12)

ThenP contrives to convinceV that for i ∈ [m] the vectors ai , bi , ci
satisfy the equations ai ◦ bi = ci . It is in turn converted into an
equation for inner product ⟨ai , bi ◦ yn⟩ – ⟨ci ,yn⟩ = 0, where yn =

Public input: R1CS instance A,B,C ∈ Fm×mp .

P’s private input: {vj ∈ Fnp }i∈[m] .

P : for i ∈ [m] (Vj , 𝜈j)← Commit(pp, vj).

P → V : {Vj }j∈[m] .

V → P : w, y
$← Fp .

P : for i ∈ [m]

li = wi ·
(∑

j
Aij · vj

)
, li+m = wi ·

(∑
j
Cij · vj

)
, (7)

ri =
(∑

j
Bij · vj

)
◦ yn , ri+m = –yn , (8)

𝜄i = wi ·
(∑

j
Aij · 𝜈j

)
, 𝜄i+m = wi ·

(∑
j
Cij · 𝜈j

)
,

𝜌i =
(∑

j
Bij · 𝜈j

)
, 𝜌i+m = 0.

P’s private input: {li , ri ∈ Fnp }i∈[2m] , {𝜄i , 𝜌i ∈ Fp }i∈[2m] , 𝜏 = 0.

Repeat for k in [logm . . . 0]:

P : d = 2k , t+k =
d∑
i=1
⟨li , ri+d ⟩, t–k =

d∑
i=1
⟨li+d , ri ⟩,

(T+
k ,𝜏

+
k)← Commit(pp, t+k), (T–

k ,𝜏
–
k)← Commit(pp, t–k).

P −→ V : T+
k , T

–
k .

V −→ P : uk
$← Fp .

P : for i ∈ [d]

li ← uk · li + u–1k · li+d , ri ← u–1k · li + uk · ri+d ,

𝜄i ← uk · 𝜄i + u–1k · 𝜄i+d , ri ← u–1k · 𝜌i + uk · 𝜌i+d ,

𝜏 ← 𝜏 + u2k · 𝜏
+
k + u–2k · 𝜏

–
k .

Reduced : z = (u0u1 · · · uk , u0u1 · · · u–1k , . . . , u–10 u–11 · · · u–1k) ∈ F2mp ,

l =
∑

i∈[2m]
zi · li , r =

∑
i∈[2m]

z–1i · ri ,

𝜄 =
∑

i∈[2m]
zi · 𝜄i , 𝜌 =

∑
i∈[2m]

z–1i · 𝜌i ,

𝜏 =
∑

k∈[0,logm]
u2k · 𝜏

+
k + u–2k · 𝜏

–
k .

P : ld , rd
$← Fnp ,

s1 = ⟨l, rd ◦ yn ⟩ + ⟨ld , r⟩, s2 = ⟨ld , rd ◦ yn ⟩,

(Ld , 𝜄d)← Commit(pp, ld), (Rd , 𝜌d)← Commit(pp, rd),

(S1 ,𝜎1)← Commit(pp, s1), (S2 ,𝜎2)← Commit(pp, s2).

P → V : Ld , Rd , S1 , S2 .

V → P : e
$← Fp .

P : l′ = l + e · ld , r′ = r + e · rd ◦ yn ,

𝜄′ = 𝜄 + e · 𝜄d , 𝜌′ = 𝜌 + e · 𝜌d , 𝜏′ = 𝜏 + e · 𝜎1 + e2 · 𝜎2 .

P → V : l′, r′, 𝜄′, 𝜌′,𝜏′.

V : L =
∑

i∈[m]

∑
j∈[m]

wi ·
(
zi · Aij + zi+m · Cij

)
· Vj ,

L′ = L0 + e · Ld , Check(pp, L′, l′, 𝜄′) ?= 1,

R =
∑

i∈[m]

∑
j∈[m]

(
zi · Bij

)
· Vj +

∑
i∈[m]

zi+m · ⟨1,G⟩,

R′ = R + e · Rd , Check(pp, R′, r′ ◦ y–1n , 𝜌′) ?= 1,

T ′ =
log 2m∑
k=0

(
u2k · T

+
k + u–2k · T

–
k

)
+ e · S1 + e2 · S2 ,

Check(pp, T ′, ⟨l, r⟩,𝜏′) ?= 1.

Figure 2: Protocol for data-parallel circuits

(y, y2, · · · , yn) is a vector generated by challenger y
$← Fp . Further,

the m equations are combined by another challenger w
$← Fp ,∑

i∈[m]
wi

(
⟨ai , bi ◦ yn⟩ – ⟨ci ,yn⟩

)
= 0. (13)

Note that (13) is about a sum of 2m inner products. For simplicity,
we define {li}i∈[2m] and {ri}i∈[2m] in (7) and (8), and rewrite (13)
as

∑
i∈[2m]⟨li , ri⟩ = 0. Following a recursive method in [31], the

protocol proceeds in (logm + 1) rounds of interactions (starting
from k = logm and finishing by k = 0). In the k-th round P sends
the commitments to

t+k =
2k∑
i=1
⟨li , ri+2k ⟩, t–k =

2k∑
i=1
⟨li+2k , ri⟩, (14)

andV responds with a random challenger uk . P then computes

li ← uk · li + u–1k · li+m, ri ← u–1k · li + uk · ri+m (15)

for the next round. Note how the number of involving vectors is
halved. After the final round, we arrive at two vectors

l =
2m∑
i=1

zi · li , r =
2m∑
i=1

z–1i · ri , (16)

where zi is the i-th element vector zwith a binary counting structure

z =

©«

u0u1 . . . ulogm
u–10 u1 . . . ulogm

...
u–10 u–11 . . . u–1logm

ª®®®®®®¬
, (17)

whereas (13) holds iff the following equation

⟨l, r⟩ =
logm∑
k=0

u2k · t
+
k + u–2k · t

–
k (18)

holds. More details about the reduction is in Appendix B.4.

Theorem 3.1. The protocol in Figure 2 for relation (11) has per-
fect completeness, computational witness-extended emulation and
perfect special honest-verifier zero-knowledge under the discrete
logarithm relation assumption.

Proof for Theorem 3.1 is in Appendix D. By the Fiat-shamir
heuristic, we can convert it into an NIZK argument of knowledge,
which has perfect completeness, computational knowledge soundness
and perfect zero-knowledge in the random oracle model.

3.2 Proof composition

Observe that the construction in Figure 2 starts with P committing
private vj as Vj for j ∈ priv. We may include a subset of Vj for
j ∈ cms where cms ⊂ priv as part of the public input (statement),
and convert the relation of (11) into the form

(A,B,C) ∈ Fm×mp ,
{vj ∈ Fnp}j∈pub,
{Vj ∈ G}j∈cms;
{vj ∈ Fnp}j∈priv,
{𝜈j ∈ Fp}j∈cms

ai =
∑

j∈[m] Aijvj ,
bi =

∑
j∈[m] Bijvj ,

ci =
∑

j∈[m] Cijvj ,∧
i∈[m] ai ◦ bi = ci ∧∧

j∈cms Check(pp,Vj , vj ,𝜈j) = 1

. (19)

It is straightforward to see that relation (19) fits the notion of RCom
for CP-NIZK arguments.

The composable nature of CP-NIZK arguments allows modu-
larly building of arguments for very complex relations by linking
arguments for relatively simpler subroutines. Moreover, in our con-
struction vector vj ∈ Fnp is arranged to include the assignments
to the same j-th entry for each of the n sub-circuits, which makes
reusing its commitment Vj across different subroutines almost free
of cost. For example, consider the typical MapReduce model for
large-scale data processing, where a map function is applied in
parallel to each chunk of data, and the outputs are aggregated and
fed into a reduce function. The map function itself may contain
many identical subroutines running on shared inputs, or on outputs
of the previous subroutines. Argument in Figure 2 allows modular
proof constructions, where the shared inputs/outputs are commit-
ted once and for all, despite their multiple appearances across the
full computation.

Another promising application is for CNN models in machine
learning context. A CNN is typically aggregated into consecutive
layers, whereas each layer is comprised of an array of identical
neurons. Our argument applies naturally to the intra-layer compu-
tation, and the inter-layer coupling can be solved by simple adaptors
ΠCom
link . Extended discussion on this point can be found in Section 5.

3.3 Performance

The protocol in Figure 2 features a proof size of roughly (m · G +
2n · Fp), counting the commitments Vj and vectors l′, r′. P’s com-
putation is dominated by mn scalar multiplications in G for comm-
mitting vj , and O(nm) multiplications in Fp . OnV’s side, the most
expensive operations are to compute T ′, L′ and R′ and to run Verify
procedures for l′, r′, which amounts to (m+n) scalar multiplications
in G and O(nm) multiplications in Fp . We can further squeeze the
proof size down to (m + 2 log n) · G using the reduction technique
in Bulletproofs [11]. The main characteristics are summarised in
Table 2, where for simplicity, only the leading terms are listed.

For better illustration of its performance, in Table 2 we also com-
pare it to two other zero-knowledge argument systems for R1CS,
Groth16 zkSNARK [32], and a non-succinct version of SpartanDL [49].
These two schemes are chosen as two extremes. Groth16 requires
a trusted setup phase, and features an almost optimum proof size
and an extremely efficient verifier. On the contrary, SpartanDL is
discrete logarithmic assumption-based, and it offers arguably the
fastest prover so far among elliptic-curve-based NIZK arguments
for R1CS. For comparison, we assume a data-parallel circuit com-
prised of n sub-circuits, where each sub-circuit is of size m. For
Groth16 and SpartanDL, it is interpreted as a single large circuit of
size mn.

In many aspects, our construction is comparable to SpartanDL.
They both avoid the trusted setup phase required by Groth16. They
offer efficient provers, several times faster than that of Groth16 (con-
sidering that Groth16 needs an elliptic curve that is both pairing-
friendly and fft-friendly while SpartanDL and our construction not,
in practice the difference could be more than 10×). They have sub-
linear verifiers and proof sizes, where those of Groth16 are constant.

For ZKCP, a trusted setup phase is undesirable, the proof size is
usually not a bottleneck, and the system throughput (i.e., amount of
data exchanged end-to-end in unit time span) is jointly determined

Table 2: Comparison with Groth16 and SpartanDL

Construction Setup type
Sizes Time complexity

|𝜎 | |𝜋 | Prover Verifier

Groth16 Trusted
G 3mn 2 4mn 3 Pairings
G2 mn 1 mn
Fp — — O(mn ∗ logmn) —

SpartanDL Public
G

√
mn

√
mn mn 2

√
mn

G2 — — — —
Fp — O(logmn) O(mn) O(

√
mn)

This work Public
G n m mn m + n
G2 — — — —
Fp — O(logmn) O(mn) O(m + n)

by both the prover and the verifier. So SpartanDL and our con-
struction seem to be better choices than Groth16. In the context of
data-parallel computations, we prefer our construction to SpartanDL
for flexible proof compositions and reuse of commitments. We note
that SpartanDL can also be modified into a data-parallel form, but
the details are beyond the scope of the current work.

4 The ZKCPlus protocol
In this section we describe ZKCPlus, an extension of ZKCP, which
focuses on optimizing and scaling up the ZKCP protocol, and adapt-
ing it to practically large-scale data exchange.

4.1 ZKCP revisited

Zero-Knowledge Contingent Payment (ZKCP) protocol tackles the
problem of conducting fair exchange of digital goods and currencies
without any centralized trust. It involves three parties, a seller S, a
buyer B, and a script/smart contract implemented on a blockchain
network acting as an arbiter J . S runs on a private input of digital
good x s.t. for a prescribed predicate 𝜙 , 𝜙(x) = 1 holds. B runs on a
private input of digital currency p.

Let Enc be an encryption scheme, H a cryptographic hash func-
tion, and Π an NIZK argument of knowledge. With a polynomial-
time computable predicate 𝜙 , a ZKCP protocol generally runs as
follows:

1. Validate & Deliver:
• S on input of digital good x, chooses an encryption key k, and
computes ciphertext z ← Enck(x), hash image (hash-lock) h←
H(k), and proof 𝜋 ← Π.Prove(𝜎 , (z, h), (x, k)) which attests the
knowledge of (x, k) s.t.

𝜙(x) = 1 ∧ z = Enck(x) ∧ h = H(k), (20)

and sends the tuple (z, h,𝜋) to B;
• B on receipt of (z, h,𝜋) runs b← Π.Verify

(
𝜎 , (z, h),𝜋

)
, aborts

if b = 0, otherwise builds a transaction tx = (p, h)sigB which
pays funds p to one who opens the hash-lock h by revealing
its preimage, and sends tx to J ;

2. Reveal: S checks if tx posted by B contains the designated hash
image h, aborts if not, otherwise reveals k;

3. Finalize: On the revealed k, J executes tx if H(k) = h, which
will transfer B’s funds p to S, otherwise the funds are returned

to B. If k is correct, B can retrieve the digital good by running
x ← Enc–1k (z).

A ZKCP protocol is said to be secure if it fulfills the following
criteria:

• (buyer fairness) for any possibly malicious seller S∗, if its balance
increases with non-negligble probability, then the buyerB learns
some x ′ s.t. 𝜙(x ′) = 1;
• (seller fairness) for a seller S interacting with a possibly mali-
cious buyer B∗, if S’s balance does not increase, then except for
negligible probability, B∗ learns no information of x, apart from
what can be inferred from 𝜙 .

As for its performance, the most important metric is end-to-end
throughput, the amount of data transferred from S to B in unit
time.

The original ZKCP design uses Pinocchio/BCTV14 zkSNARK for
Π, and SHA256-based stream cipher for Enc [9]. In retrospect, we
observe that these choices are not optimal. As forΠ, although Pinoc-
chio/BCTV14 [7, 46] (and its variate Groth16 [32]) havemany strong
points, including constant proof size and very efficient verifier, they
also have some significant drawbacks. For one thing, they require a
trusted CRS, but relying on a trusted third party to produce the CRS
contradicts ZKCP’s very premise of being trustless. So ZKCP in-
stead entrusts the buyer B to produce the CRS. Unfortunately, this
circumvention turns out to be problematic: the proof system has
to ensure subversion zero-knowledge to prevent B from learning
information about x [13, 25], but subversion zero-knowledge is usu-
ally too expensive to be of practical use. For another, the throughput
of a ZKCP protocol is jointly determined by both parties. While
these zkSNARKs offer extremely efficient verifier, it is the prover
efficiency that sets the upper limit on the overall throughput. An-
other prominent merit of these schemes, namely the constant proof
size, does not help too much either, since in ZKCP the proof is
transferred off chain alongside with the linear-sized ciphertext.

Also concerning Enc andH, many zero-knowledge-proof-friendly
ciphers and hash functions emerge in recent years. Operating na-
tively in large prime fields (or binary fields), they promise compara-
ble security strength as AES or SHA256 with orders of magnitude
less constraints in the circuits. Incorporating these schemes into the
existing ZKCP protocol can vastly boost the protocol’s performance.

4.2 Construction of ZKCPlus

We propose a variate of the ZKCP protocol, which we call ZKCPlus,
as listed in details in the following. By ZKCPlus we aim at adapt-
ing ZKCP to efficient and flexible fair exchange of data on large
scale.Henceforth we write the digital good in vector form x ∈ Fnp ,
and accordingly its ciphertext z ∈ Fnp .
1. Commit: S runs (cx, rx)← Com.Commit(pp,x), and publishes

the commitment cx;
2. Validate:
• B posts predicate 𝜙 , which specifies a relation R, possibly with
input s, s.t. 𝜙(x) = 1 iff R(s,x) = 1;

• S runs 𝜋𝜙 ← ΠCom.Prove(𝜎 , (s, cx), (x, rx, aux)) using a CP-
NIZK argument ΠCom, with aux being auxiliary witness;

• B blindly checks whether x is satisfying by running b ←
ΠCom.Verify(𝜎 , (s, cx),𝜋𝜙), and aborts if b = 0;

3. Deliver:
• S chooses a key k, encrypts x by z← Enck(x), and produces
a “proof of delivery” by

𝜋z ← ΠCom.Prove(𝜎 , (z, cx, h), (x, k, rx, aux))

which attests the knowledge of (x, k) s.t. z = Enck(x)∧H(k) = h;
S sends out tuple (z, h,𝜋z);
• B runs b← ΠCom.Verify

(
𝜎 , (z, cx , h),𝜋z

)
, aborts if b = 0, oth-

erwise builds a transaction tx = (p, h)sigB which pays funds p
to who presents the preimage of h, and sends tx to J ;

4. Reveal: (same as ZKCP);
5. Finalize: (same as ZKCP).

4.2.1 Modifications as compared toZKCP ZKCPlus’s coremod-
ification is to replace Pinocchio/BCTV14 zkSNARKs by CP-NIZK
argument schemes. The digital good x in exchange is committed
in the first place, and all later proofs refer to its commitment cx. In
this respect, we can say ZKCPlus is more “data-centric”. Moreover,
the modularity of CP-NIZK arguments allows finer-gained organi-
zation of the protocol. Concretely, we split “validate” and “deliver”
into two phases. In a “validate” phase, B posts desired predicate 𝜙 ,
whereas S responds with a proof 𝜋𝜙 for

𝜙(x) = 1. (21)

Then in a “deliver” phase, S sends out ciphertext z, accompanied
by a “proof of delivery” 𝜋z attesting that z is faithfully computed
from x using encryption key k, namely

z = Enck(x) ∧ h = H(k). (22)

Note relations in (21) and (22) share input of x. Given the compo-
sition properties of CP-NIZK arguments, 𝜋𝜙 and 𝜋z jointly attests
their conjunction of (20).

We use the CP-NIZK argument described in the previous section
in ZKCPlus whenever a computation is data-parallel. In particular,
with a block cipher running in CTRmode, the encryption procedure
in the “deliver" phase is in fact data-parallel. We develop a “proof
of delivery” based on this observation.

4.2.2 Proof of delivery We use MiMC-p/p block cipher in CTR
mode for the encryption scheme Enc. More specifically, the i-th
element of z (denoted zi) is computed from the i-th element of x
(denote xi) by

zi = xi + Ck(nonce + i). (23)

As illustrated in Figure 1, this is in essence a data-parallel computa-
tion, where i-th block cipher runs on inputs of xi , k and (nonce + i),
and produces output zi . Therefore, the CP-NIZK argument for
data-parallel circuits in Section 3 applies. In aggregation, we write
k = k · 1 = [k, k, . . . , k], ctr = [nonce + 1, nonce + 2, . . . , nonce + n];
ctr and z are public, whereas x and k are private and committed as

(cx, rx)← Commit(pp,x), (ck, rk)← Commit(pp,k). (24)

Note that cx is the very commitment of x sent in the “commit”
phase. We employ the argument described in Section 3 to prove the
relation

A,B,C ∈ Fm×mp ,
ctr, z ∈ Fnp ,
cx, ck ∈ G;

{vj ∈ Fnp}j∈priv,
rx, rk ∈ Fp

ai =
∑

j∈[m] Aij · vj ,
bi =

∑
j∈[m] Bij · vj ,

ci =
∑

j∈[m] Cij · vj ,∧
i∈[m] ai ◦ bi = ci

∧ Check(pp, cx,x, rx) = 1
∧ Check(pp, ck,k, rk) = 1

, (25)

where A,B,C ∈ Fm×mp are the R1CS coefficient matrices for C, with
public assignments {vj }j∈pub = {ctr, z}, and committed assignments
{vj }j∈cms = {x,k}.

Taking advantage of the composition property of ΠCom, we can
even omit the hash-lock h, and instead use the commitment ck for
k as the lock. Specifically, in the “deliver” phase, S sends ck in place
of the hash image h, and correspondingly, in the “reveal” phase it
reveals a pair of (k, rk). The arbiter J , checks whether

Check(pp, ck, (k · 1), rk) = 1. (26)

In ZKCPlus the arbiter J is instantiated by a smart contract on
blockchain whose computational power is limited. To prevent the
linear overhead of (26), it may store a pre-computed G0 = ⟨1,G⟩,
and check the revealed (k, rk) pair by

k · G0 + rk · H
?= ck. (27)

While security of the hash lock is built on the collision- and preimage-
resistance of the hash function H, here we rely on the the binding
and hiding properties of the Pedersen commitment scheme to en-
sure that neither S nor B can cheat with ck. Refer to Appendix E
for more details.

Theorem 4.1. ZKCPlus is a secure ZKCP construction, given that
the embedded CP-NIZK argument ΠCom satisfies completeness, com-
putational knowledge soundness and zero-knowledge.

We include a sketch of the proof for Theorem 4.1 in Appendix E.

4.3 Functionalities and extensions

By incorporating the composition property of CP-NIZK arguments,
ZKCPlus can support some functionalities that could be difficult or
inefficient for the original ZKCP design.

4.3.1 Compositions of predicates Due to composability ofΠCom,
it is possible to further split the “validate” phase into multiple
rounds. In each round, B challenges with a predicate 𝜙 (i), possibly
dependent on previous predicates, and S responds with a proof 𝜋 (i)

attesting 𝜙 (i)(x) = 1. {𝜋 (i)} jointly validates the relation∧
i
𝜙 (i)(x) = 1. (28)

Of these predicates, some may be data-parallel while others not. We
can use the argument in Section 3 for those are, and other suitable
CP-NIZK arguments for those are not, as long as they refer to the
same initial commitments.

By this modular approach, ZKCPlus is capable of building up
very complicated predicates, or validating a predicate that holds up
to a probability threshold. See 5.1 for an example.

4.3.2 Selective transfer With ZKCPlus, it is easy to implement
a “selective transfer” mode, where after the “validate” phase, B
decides that it is interested in purchasing only a subset of the bulk
x, so it uses a binary mask b ∈ {0, 1}n, marking the wanted part of
x by 1 and the rest by 0. Accordingly, S runs the “deliver” phase
on input of x′ = x ◦ b, combined with an adaptor ΠCom

link attesting
that x′ is consistent with the original x s.t. the linking function

f (x,x′) = ⟨x, b ◦ y⟩ – ⟨x′,y⟩ = 0 (29)

holds for randomly sampled y
$← Fnp . By Schwartz-Zippel lemma,

except for a negligible soundness error n
|Fp | , f (x,x

′) = 0 implies
that x′ = x ◦ b. Note that (29) is about a sum of two inner vector
products, so the argument in Appendix B.2 applies. We include one
example for this mode in Section 5.2.

4.3.3 ZKCSP A zero-knowledge contingent service payment (ZKCSP)
[13] protocol allows payment for digital services rather than digital
goods. Take file storage service as an example. B will pay if S can
prove the integrity of a stored file, without actually retrieving the
file. ZKCSP utilizes a pair of claw-free hash functions (H1,H2), for
which finding a pair (x1, x2) s.t. H1(x1) = H2(x2) is computationally
infeasible. For a designated file x and predicate 𝜙 s.t. 𝜙(x) = 1 iff x

is intact, S selects k
$← Fp , computes a hash lock h← H1(k), and a

proof 𝜋 for the relation(
H1(k) = h ∧ 𝜙(x) = 1

)
∨

(
H2(k) = h ∧ 𝜙(x) = 0

)
. (30)

S sends out tuple (𝜋 , h), and B on verification of 𝜋 sends out a
conditional transaction tx = (p, h)sigB locked on h. If S reveals a k
s.t.H1(k) = h, J executes the transaction and finalizes the payment.

Then by skipping the “deliver” phase, ZKCPlus naturally adapts
to the ZKCSP scenario. Moreover, in ZKCPlus the initial commit-
ment cx for x is reusable for multiple runs of the protocol. This
comes in handy for a long-term file storage service, where the
integrity of x has to be checked from time to time.

5 Applications
As an extension of ZKCP, ZKCPlus supports all possible applications
of ZKCP. In particular, we describe how it adapts to trading sudoku
solutions in Appendix F. But ZKCPlus is not limited to this. With
its modular nature, it applies to a broader scope of applications, and
some of them are of practical interest. In this section, we develop
a comprehensive example of trading a trained CNN model in the
MLaaS context. We also explore ZKCPlus’s potential application in
cloud database systems.

5.1 Pay to CNN model

MLaaS allows a computationally limited client to delegate the heavy
tasks of training machine learning models to an untrusted server
who has ample computational resources. With prescribed model
architecture and hyperparameters, the server does the training, and

sells the trained parameters (e.g., weights and biases) as a digital
good. The client is willing to pay for the trained model only if it
shows sufficiently high accuracy. To achieve fairness, the question
arises as how the client can test the model’s accuracy without
knowing any of the trained parameters.

This becomes easy with ZKCPlus. Take CNN for image classifica-
tion as an example. First, in the “commit” phase the server publishes
the commitment c to the trained parameters of the model. Then
in the “validate” phase, the client challenges with some test im-
age. The server runs the trained model on the test image, acquires
a classification result, and generates a proof 𝜋 using a CP-NIZK
argument with reference to the commitment c. The client exams
the classification result and its accompanying proof, and aborts
if either is wrong. Otherwise, the client should be confident that
the model applied to the test image yields correct classification. If
the client decides that one testing result is not convincing enough,
ZKCPlus allows multiple rounds of challenges. The more rounds of
successful challenges are performed, the more confident the client
will be, until eventually it decides to accept or to abort.

Moreover, we note that many machine learning related com-
putations are data-parallel. Typically, a CNN model is organized
as a series of consecutive layers, including convolutional layers,
activation layers, pooling layers, fully connected layers and oth-
ers, whereas each of these layers consists of an array of identical
units (i.e., neurons) running in parallel. The CP-NIZK argument for
data-parallel computations of Section 3 adapts smoothly to most of
these layers.

Convolutional layer Convolutional layer convolves an input
feature map with a series of filters, and outputs a new feature map.
For simplicity, we write the input feature map as vector x ∈ Fnp ,
and the filter as vector t ∈ Fkp of size k < n. It works by sliding t
through x, and at each step computing a weighted sum of

x ′i = ⟨xi , t⟩, (31)

where xi marks the subset of x that overlaps with t at the i-th step.
All x ′i aggregate into the output feature map x′. From x to x′, the
computation is data-parallel, so the argument of Section 3 applies.

Activation layer Take the widely used activation function, Rec-
tified Linear Unit (ReLU) as an example. On input of vector x ∈ Fnp ,
the ReLU layer outputs x′ ∈ Fnp of the same length, whose i-th
element is determined by

x ′i =

{
xi , if xi > 0,
0, if xi ≤ 0.

(32)

It is fully data-parallel, so the argument of Section 3 applies.

Pooling layer We consider the widely used pooling layer, max
pooling, which reduces the size of a feature map by dividing it into
small patches and extracting the local maximum of each patch. We
assume the usual case of 2×2-pixel patches. For an input featuremap
x ∈ Fnp , we divide it into 4 segments x(0),x(1),x(2),x(3) ∈ Fn/4p such
that their respective i-th elements {x(0)i , x(1)i , x(2)i , x(3)i } constitute a
2 × 2-pixel patch. Local maximums of these 2 × 2-pixel patches
constitute a quarter-sized output feature map x′ ∈ Fn/4p , whose i-th
element is

x ′i = max(x(0)i , x(1)i , x(2)i , x(3)i). (33)

T =

t11 t12 . . . t1l b1 = 𝜙(r1)
t21 t22 . . . t2l b2 = 𝜙(r2)
...

...
. . .

...
...

tn1 tn2 . . . tnl bn = 𝜙(rn)

{ }
SELECT c1 c2 . . . cl WHERE b

Figure 3: Database table modeled as a matrix

From {x(i)}i∈[0,3] to x′, the computation is data-parallel, so the argu-
ment of Section 3 applies. To justify the consistency between x and
{x(i)}i∈[0,3], we employ an adaptor ΠCom

link for interlinking function

f (x,x(0),x(1),x(2),x(3)) =
∑

i∈[0,3]
⟨x(i),y(i)⟩ – ⟨x,y⟩ = 0, (34)

where y
$← Fnp is a randomly sampled challenge vector, and it

breaks into segments {y(i)}i∈[0,3] in the same way as x breaks into
{x(i)}i∈[0,3]. Except for negligible error n

|Fp | , f (x,x
(0),x(1),x(2),x(3)) =

0 holds iff {x(i)}i∈[0,3] are consistent with x. Note (34) is a sum of
inner products, the argument in Appendix B.2 applies.

Fully connected layer In essence, fully connected layer per-
forms matrix-vector product of a weight matrix T and a flattened
feature map x, outputting x′ = Tx. We can reduce the matrix-vector
product to a group of inner products, and employ the CP-NIZK
argument in Appendix B.2 to prove it. Though not data-parallel,
this argument is composable with the data-parallel argument for
the previous layer via a shared commitment to x.

Based on these observations, in Section 6.4.1 we develop and
evaluate an end-to-end demonstration for exchanging CNN mod-
els [40, 50]. Alternatively, one may imagine an application of ex-
changing images using a pre-trained model acting as the predicate
𝜙 , where B only pays for images classified as a particular type by
the pre-trained model. Similar applications extend to other valuable
digital assets, such as documents, videos, and software.

5.2 Pay to SQL query

ZKCPlus and the data-parallel CP-NIZK argument also find their
potential applications in could databases systems. A typical scenario
is that a client outsources a database to an untrusted server, and
then the server responds to the client’s queries [58, 59]. For fairness,
the client only pays for correct query results.

As an explanatory example, we consider a database tablemodeled
as a matrix of finite field elements T ∈ Fn×lp . For ZKCPlus, in the
“commit” phase the table is committed by each column cj ∈ Fnp for
j ∈ [l]. In the “validate” phase, the clients sends a SQL query

SELECT [columns] WHERE [predicate],
which specifies the desired columns cj , with a “WHERE” clause
defining a predicate𝜙 that restricts the rows used for computing the
query result. More specifically, 𝜙 runs on each row ri and outputs
a binary decision

bi = 𝜙(ri) = 𝜙(ti1, . . . , til). (35)

As illustrated in Figure 3, applying the “WHERE” clause to each
row of the table is data-parallel, so we use the argument described

in Section 3 with reference to the initial commitments to columns
cj . In practice the “WEHER” clause usually consists of a sequence
of sub-clauses connected by logical operators such as “AND” and
“OR”, in which case the argument’s composability comes in handy.
The results bi aggregate into a binary mask b ∈ {0, 1}n. Then in the
“deliver” phase, the server runs “proof of delivery” on selected set
c′j = cj ◦ b.

In Section 6.4.2 we evaluate a minimal demo of sub-string query
on a table containing one single column of string type. Apart from
the basic “SELECT” query, it is also possible for ZKCPlus to support
other SQL queries such as “COUNT”, “SUM”, etc.

6 Evaluation
In this section we give a brief description of our implementation,
and present comprehensive evaluations on its performance.

6.1 Implementation

We have built a fair-exchange platform on the testnet of Ethereum
with ZKCPlus. It consists of the following three main components.
• ZKCPlus-lib, a core library of our CP-NIZK argument scheme
shipping with Golang bindings, 23k LoC in C++.
• ZKCPlus-node, a node application dealing with communication,
smart contract invoking, etc., 35k LoC in Golang.
• ZKCPlus-contract, a smart contract for payment management
and commitment opening, 900 LoC in Solidity.
Our ZKCPlus implementation is built with the mcl library [33],

using a BN_SNARK1 curve which has the same parameters as the
BN128 curve of the libSNARK library [38] used by ZKCP. We utilize
Pippenger’s algorithm [48] for efficient multi-scalar multiplication,
which has O(n/ log n) computational complexity w.r.t. vector length
n. According to our benchmark, our mcl library [33] based multi-
scalar multiplication implementation shows comparable efficiency
as the libSNARK library [38] used by ZKCP, with the relative ratio
ranging from 0.8 to 1.4 as n varies from 25 to 214. As for the block
cipher, since the BN_SNARK1 curve has a 254-bit prime order p, we
use 110 rounds of MiMC-p/p with the exponent of the non-linear
permutation function d = 5 to thwart interpolation attacks [36].

We have realized the three applications described in Section 5,
i.e., pay to sudoku solutions, pay to CNN models, and pay to SQL
query results.

6.2 Experimental setup

For a direct comparison between ZKCPlus and ZKCP, we measure
their performances in the application of “pay to sudoku solution”.
We compare their respective setup cost, running time and com-
munication overhead. Then we make some modifications to the
original implementations of the two protocols to compare their
respective end-to-end throughput for varied-size data and prover
efficiency of their underlying zero-knowledge schemes. The ex-
periments are carried out with both of the seller and the buyer
running on Ubuntu 18.04 with 3.2 GHz CPU and 32 GB memory.
Considering the ZKCP implementation runs single-threaded, we
limit ZKCPlus to one thread as well.

Besides, we also evaluate the applications of ZKCPlus in “pay to
CNN model” and “pay to SQL query” scenarios. Here we shift to
another experimental setup, where the seller (server) runs with 24
threads on a machine with 2.9 GHz CPU and 256 GB memory, and

Table 3: Setup cost of ZKCP and ZKCPlus
Setup time CRS size

Solution size ZKCP ZKCPlus ZKCP ZKCPlus

9×9 17.88 s

0.03 s

30.88 MB

1.02 MB
16×16 39.18 s 69.75 MB
25×25 87.21 s 165.67 MB
36×25 180.12 s 336.61 MB
49×49 322.54 s 635.93 MB

Table 4: Seller running time of ZKCP and ZKCPlus
in “validate” and “deliver” phases

Validate phase Deliver phase
Solution size ZKCP ZKCPlus ZKCP ZKCPlus

9×9 0.12 s 0.08 s 5.31 s 0.19 s
16×16 0.53 s 0.14 s 11.43 s 0.26 s
25×25 1.92 s 0.33 s 28.46 s 0.41 s
36×25 5.26 s 0.54 s 56.09 s 0.52 s
49×49 13.61 s 1.07 s 110.33 s 0.78 s

Figure 4: Running time of ZKCP and ZKCPlus
in “validate” and “deliver” phases

Figure 5: Communication cost of ZKCP and ZKCPlus
in “validate” and “deliver” phases

the buyer (client) with 6 threads on the aforementioned machine
with 3.2 GHz CPU and 32 GB memory. We evaluate the two appli-
cations in the running time of the seller and the buyer respectively,
as well as the communication cost between them. We also show
other metrics (i.e., gas cost of our smart contract) in Appendix G.

6.3 Comparison with ZKCP

6.3.1 Performance on “pay to sudoku solution” Wefirst com-
pare the two protocols in the application of “pay to sudoku solution”,
considering their respective setup cost, runtime overhead and com-
munication cost, with the size of sudoku solutions varying from
9×9 to 256×256.

Setup cost In setup phase, ZKCPlus samples a vector of group
elements (with length n = 214 by default) as public and circuit-
independent parameters, while ZKCP yields a circuit-dependent
CRS involving some secret randomnesses. In Table 3 we list the
running time of setup phase and the size of generated CRS of ZKCP
and ZKCPlus for trading varied-size sudoku solutions respectively.
Note that ZKCP runs out of memory when the sudoku gets larger
than 49×49, so we only show the statistics we collected on the
smaller ones.

As Table 3 shows, ZKCPlus outperforms ZKCP in both setup
time and CRS size. The setup phase of ZKCPlus is extremely light-
weight with only tens of milliseconds running time and about 1
MB public parameters, while for ZKCP, the setup time and CRS size
rise up greatly as circuit size grows. For example, the generated
CRS reaches up to 635.93 MB for trading a 49×49 sudoku solution.

Runtime overhead We focus on the running time of the “val-
idate” and “deliver” phases, given that they are the dominating
factors for both protocols. In Figure 4, we show the total running
time of these two phases respectively for the seller and the buyer.

As shown in Figure 4, ZKCP incurs extremely asymmetrical
overheads for the two trading parties. The buyer is quite efficient but
the seller’s running time skyrockets. For a 49×49 sudoku solution,
it takes about 124 s for the seller to generate a proof, but only a
few milliseconds for the buyer to verify it. Also, ZKCP is memory-
consuming, that the seller runs out of memory when solution size
gets larger than 49×49.

By contrast, ZKCPlus reduces seller running time by 21-67×.
Specifically, for the 49×49 sudoku solution, the two phases only take
the seller about 1.8 s to run.Meanwhile, the buyer of ZKCPlus shows
competitive efficiency as that of ZKCP. ZKCPlus also demonstrates
higher scalability; For the largest 256×256 (64 KB) sudoku solution,
the two phases finish within about 35 s.

More detailed statistics on seller running time of the two phases
are shown in Table 4. For ZKCP, we calculate the running time
of the two phases according to their corresponding number of
constraints in the circuit. ZKCPlus seller is 1.6-12.7× more efficient
than ZKCP in “validate” phase, and 28.7-142.6× more efficient in
“deliver” phase.

Communication cost We show communication cost between
the two parties in “validate” and “deliver” phases in Figure 5. The
proof size in ZKCP is succinct due to the underlying zkSNARK
scheme. However, the overall communication cost still grows lin-
early due to its linear-size ciphertext. (Due to memory limitations,
the experiment cuts at 49× 49 solution size). Although the proof
size of our CP-NIZK argument is larger and not constant, it won’t
be a bottleneck since the cost is acceptable for off-chain communi-
cations.

6.3.2 Throughput of large-scale delivery To further evaluate
scalability of the two protocols, we measure their throughput for

Figure 6: Throughput of ZKCP and ZKCPlus
in “deliver” phase

Figure 7: Proving time of ZKCP and ZKCPlus-SHA256 in
“deliver” phase (under the same encryption scheme)

Table 5: Performance of “pay to CNN model”
application on two CNN models

Seller time Buyer time Communication cost

3-layer CNN Validate phase 0.79 s 0.14 s 51.35 KB
Deliver phase 0.95 s 0.11 s 211.47 KB

VGG16 model Validate phase 6.15 min 56.97 s 80.71 KB
Deliver phase 6.13 min 18.50 s 298.10 MB

Table 6: Performance of “pay to SQL query” application
on a sub-string query over 100,000 records

Seller time Buyer time Communication cost
Validate phase 5.70 s 0.77 s 988.18 KB
Deliver phase 0.31 s 0.08 s 96.61 KB

large-sacle data delivery. For simplicity, we remove solution vali-
dation from ZKCP, and compare its throughput to that of ZKCPlus
in “deliver” phase only, with the data size varying from 32 B to 512
KB. We define throughput by D

T , where D and T denote the size of
the delivered data and the total running time of the two parties in
“deliver” phase. We show our statistics in Figure 6.

Again, ZKCP runs out of memory when data size exceeds 4
KB; for 2 KB data, its throughput gets to about 22 B/s. In contrast,
ZKCPlus shows a throughput of 2278 B/s for 2 KB data, 104× higher
than that of ZKCP. Note that the throughput of ZKCPlus scales
logarithmically with data size, since the most costly operationmulti-
scalar multiplication has O(n/ log n) computational complexity.

6.3.3 Prover efficiency of CP-NIZK argument For a better il-
lustration of how the prover efficiency of our CP-NIZK argument
compares to the zkSNARK used by ZKCP, we replace the MiMC
block cipher in ZKCPlus with the same encryption scheme adopted
by ZKCP, i.e., a stream cipher constructed by running a SHA256-
based pseudo-random function in CTR mode. We denote this im-
plementation of ZKCPlus by “ZKCPlus-SHA256”. Then we encrypt
varied-size data and measure proving time for encryption subrou-
tine in ZKCP and ZKCPlus-SHA256 respectively. Again, for fair
comparison, we run ZKCPlus-SHA256 with one single thread.

Limited by ZKCP, we can only collect statistics on data smaller
than 4 KB. As shown in Figure 7, under the same encryption scheme,
the prover of ZKCPlus-SHA256 is still more efficient than that of
ZKCP. The tendency of proving time varying with data size of
the two protocols both roughly conform with the computational
complexity of multi-scalar multiplication, i.e., O(n/ log n), but the
constant of ZKCPlus-SHA256 is much smaller. By a linear fit, we can
make a rough estimation that ZKCPlus-SHA256 prover has a 13×
smaller constant than ZKCP, indicating that our CP-NIZK argument
is an order of magnitude faster in proving time than the zkSNARK

scheme adopted by ZKCP. (As mentioned earlier, the differences
from the underlying multi-scalar multiplication implementations
account for only 0.8-1.4×, which is negligible.)

6.4 Performance of ZKCPlus applications

6.4.1 Pay to CNN model We evaluate the “pay to CNN model”
application on two neural network models, a simple 3-layer CNN
for hand-written digit recognition, and a well-known deep CNN
VGG16 [50] for image classification. The 3-layer CNN is composed
of one convolutional layer with Relu activation and 2×2 max pool-
ing by stride size 2, and two fully-connected layers. We train the
model on the MNIST dataset [40], with an input size of 28×28, and
a total number of 8,620 parameters. The VGG16 model is far more
complicated, covering all the representative components described
in Section 5, mainly consisting of thirteen convolutional layers and
three fully-connected layers. We train the VGG16 model on a 10-
class colored image dataset CIFAR-10 [37], with a 32×32 input size
and up to 14,991,946 parameters. We use fixed-point arithmetics
for the both models.

After training the twomodels on the server machine, wemeasure
the running time and communication cost of the server and the
client in “validate” and “deliver” phases for trading the models.
Without loss of generality, here we only show our statistics on one
test image case. In practice the buyer may challenge the seller with
several test images in “validate” phase.

As shown in Table 5, for the 3-layer CNN, the two phases finish
for either the server or the client within 1 s, and incur only 51.35
KB and 211.47 KB communication cost respectively. For the VGG16
network which involves about fifteen million parameters, it takes
the seller 6.15 min and the buyer 56.97 s to prove/verify an inference
process on one test image. In the later “deliver” phase it takes the
seller 6.13 min and the buyer 18.50 s to generate/verify the proof

of delivery for all the fifteen million parameters. The proof size in
“validate” phase is about 80.71 KB, and the ciphertext and proof of
delivery in “deliver” phase is less than 300 MB.

In fact our CP-NIZK argument shows a great advancement in
verifiable inference computation of CNN. Previous study [41] has
evaluated Groth16 zkSNARK scheme on the LeNet-5 [39] CNN
which has sixty thousand parameters. On a machine with 3.4 GHz
CPU and 32 GB memory, it takes about 1.5 h to generate a 11 GB
CRS, and 45 min to prove an inference process. In contrast, for a
much larger model that has 250× more parameters, ZKCPlus can
prove an inference process within 7.5× less time and negligible
setup time and CRS size.

6.4.2 Pay to SQL query We construct a database storing a table
of 100,000 31-byte strings, and measure the performance of the
“pay to SQL query” application on trading subset of the strings that
contain a specific 5-byte sub-string. We list the statistics in Table 6.

In “validate” phase the seller executes the “SELECT” query and
constructs an argument for the selection process. It only takes the
seller about 8.67 s to build the proof for selection query over all
the 100,000 records, and the buyer 0.77 s to verify it, with less
than 1 MB communication cost. There are 402 entries selected out,
and in “deliver” phase it takes both the two parties less than 1
s to generate/verify the proof of delivery, with less than 100 KB
communication cost.

7 Related Work

7.1 Blockchain-based fair-exchange protocols

Although it is well recognized that without further assumptions
fair exchange is unachievable without the aid of a trusted third
party [45], the emergence of blockchain networks such as Bitcoin
and Ethereum offers a possible workaround, where instead of cen-
tralized third parties the participants can place their trusts in the
decentralized networks [21, 23, 51, 52].

The ZKCP [43] protocol is a seminal work in achieving fairness
between two trustless parties, which uses blockchain-based scripts
as the arbiter for the exchange. However it faces problems of low
practicality and scalability. Another interesting fair-exchange proto-
col based on blockchain, FairSwap [23], aims at reducing the parties’
computational cost by avoiding the use of heavy zero-knowledge
proofs. It instead adopts a lightweight proof of misbehavior and
allows a cheated buyer to issue a dispute to the arbiter (smart
contract) with the misbehavior proof in order to restore fairness.
Clearly, it offers “weak” fairness [3, 45] compared to ZKCP and
ZKCPlus. Besides, the on-chain gas cost of verifying a misbehavior
proof scales up with the proof size, severely limiting its practical-
ity and scalability. As a contrast, ZKCP and ZKCPlus offer O(1)
on-chain gas cost.

7.2 Zero-knowledge proofs

The field of zero knowledge proofs [30] are undergoing fast de-
velopments. Many efficient protocols and systems emerge in the
recent years. Categorized by their underlying techniques, there are
pairing-based succinct NIZK argument of knowledge (zkSNARK)
schemes [17, 26, 27, 32, 42, 46, 55], discrete logarithm-based proofs [10,
11, 31, 49, 53], interactive oracle proofs [5, 6, 18, 57], MPC-in-the-
head-based proofs [2, 15, 28, 34, 35] and so on. They depend on

different security assumptions, and offer different trade-offs be-
tween prover time, verifier time and proof size. The original ZKCP
design uses pairing-based arguments [7, 46]. To avoid the prob-
lematic trusted setup phase, we switch to discrete logarithm-based
schemes that only require public setup. In particular, our construc-
tion largely draws on the techniques proposed by [31].

We build our argument for data-parallel computations on top of
R1CS, an extension of quadratic arithmetic programs [27]. Another
choice is the GKR protocol [19, 29], which offers asymptotically
optimal prover time for data-parallel computations. There have
been several GKR protocol-based argument schemes [53, 55, 57].
Traditionally this approach assumes layered arithmetic circuits,
which significantly limits its scope of application and is not fit for
our protocol as well. Recently, [56] demonstrates how this restric-
tion can be removed, making GKR-based arguments a promising
direction to explore in the future. By incorporating their prover
efficiency, we may further boost ZKCPlus’s throughput.

Another interesting direction to explore involves interactive
oracle proofs. There have been quite a few ready-made protocols
for both R1CS [5, 6, 18] and GKR protocol [57]. They use lightweight
cryptographic primitives (mainly collision-resistant hash functions),
and feature high prover efficiency, full transparency, and plausible
post-quantum security. Their main disadvantage is relatively large
proof size, which is not a big problem for ZKCPlus.

8 Conclusion
In this paper we propose a practical and flexible fair-exchange
protocol ZKCPlus, as an optimization and extension of ZKCP. We
observed that the ZKCP protocol incurs a problematic trusted setup
phase and heavy proving overhead, and is not practical for com-
plicated data validations. Thereby we design a prover-efficient CP-
NIZK argument for data-parallel computations, which requires only
public setup. With this argument we can relieve the protocol of
the costly setup phase, and in combination with circuit-friendly
cryptographic primitives, we are able to significantly reduce the
seller’s proving overhead; its composable nature furthermore al-
lows the protocol to validate complicated predicates in a flexible
modular manner. Our evaluations show that ZKCPlus significantly
outperforms the ZKCP protocol, with both much lighter weighted
setup phase and higher overall throughput. We also demonstrate
that with ZKCPlus, we are able to build applications that are of
practical interests.

Acknowledgement
This work was supported by: donations from Nervos Foundation
and HashKey, National Natural Science Foundation of China under
Grant 61772308, 61972224 and U1736209, and BNRist Network and
Software Security Research Program under Grant BNR2019TD01004
and BNR2019RC01009. Yupeng Zhang is supported by DARPA un-
der Contract No. HR001120C0087. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of DARPA.

References
[1] Martin R Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In Advances in Cryptology-ASIACRYPT 2016-
22nd International Conference on the Theory and Application of Cryptology and

Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I.
191–219.

[2] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venkitasubrama-
niam. 2017. Ligero: Lightweight sublinear arguments without a trusted setup. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2087–2104.

[3] N Asokan. 1998. Fairness in electronic commerce. (1998).
[4] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are practical: a par-

adigm for designing efficient protocols. 1st ACM Conference on Computer and
Communications Security November 1993 (1993), 62–73.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. IACR Cryptology
ePrint Archive 2018 (2018), 46.

[6] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments
for R1CS. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 103–128.

[7] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Succinct
non-interactive zero knowledge for a von Neumann architecture. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14). 781–796.

[8] Sean Bowe. 2016. pay-to-sudoku. http://diyhpl.us/~bryan/papers2/bitcoin/zkcp3.
pdf.

[9] Sean Bowe. 2016. pay-to-sudoku. https://github.com/zcash-hackworks/pay-to-
sudoku.

[10] Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Halo: Recursive Proof Com-
position without a Trusted Setup. IACR Cryptol. ePrint Arch. 2019 (2019), 1021.

[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 315–334.

[12] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. Legosnark: Modular
design and composition of succinct zero-knowledge proofs. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security.
2075–2092.

[13] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo.
2017. Zero-knowledge contingent payments revisited: Attacks and payments for
services. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 229–243.

[14] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally
composable two-party and multi-party secure computation. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing. 494–503.

[15] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 1825–1842.

[16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. 2016. Efficient zero-
knowledge proof of algebraic and non-algebraic statements with applications to
privacy preserving credentials. In Annual International Cryptology Conference.
Springer, 499–530.

[17] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: Preprocessing zksnarks with universal and
updatable srs. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 738–768.

[18] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum
and transparent recursive proofs from holography. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer,
769–793.

[19] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical
verified computation with streaming interactive proofs. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. 90–112.

[20] John D’Arcy, Anat Hovav, and Dennis Galletta. 2009. User awareness of security
countermeasures and its impact on information systems misuse: A deterrence
approach. Information systems research 20, 1 (2009), 79–98.

[21] Sergi Delgado-Segura, Cristina Pérez-Solà, Guillermo Navarro-Arribas, and Jordi
Herrera-Joancomartí. 2017. A fair protocol for data trading based on Bitcoin
transactions. Future Generation Computer Systems (2017).

[22] Kevin Dooley. 2001. Designing Large Scale Lans: Help for Network Designers. "
O’Reilly Media, Inc.".

[23] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. Fairswap: How to
fairly exchange digital goods. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 967–984.

[24] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the Theory and Application
of Cryptographic Techniques. Springer, 186–194.

[25] Georg Fuchsbauer. 2019. WI is not enough: Zero-knowledge contingent (ser-
vice) payments revisited. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 49–62.

[26] Ariel Gabizon and Zachary J Williamson. 2019. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge.
(2019).

[27] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-
dratic span programs and succinct NIZKs without PCPs. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
626–645.

[28] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. Zkboo: Faster zero-
knowledge for boolean circuits. In 25th USENIX Security Symposium (USENIX
Security 16). 1069–1083.

[29] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. 2015. Delegating
computation: interactive proofs for muggles. Journal of the ACM (JACM) 62, 4
(2015), 27.

[30] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The knowledge
complexity of interactive proof systems. SIAM Journal on computing 18, 1 (1989),
186–208.

[31] Jens Groth. 2009. Linear algebra with sub-linear zero-knowledge arguments. In
Annual International Cryptology Conference. Springer, 192–208.

[32] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 305–326.

[33] herumi. 2015. mcl library. https://github.com/herumi/mcl.
[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

knowledge from secure multiparty computation. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing. ACM, 21–30.

[35] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2008. Founding cryptography
on oblivious transfer–efficiently. In Annual International Cryptology Conference.
Springer, 572–591.

[36] Thomas Jakobsen and Lars R. Knudsen. 1997. The Interpolation Attack on
Block Ciphers. In Fast Software Encryption, 4th International Workshop, FSE ’97,
Haifa, Israel, January 20-22, 1997, Proceedings (Lecture Notes in Computer Science,
Vol. 1267), Eli Biham (Ed.). Springer, 28–40. https://doi.org/10.1007/BFb0052332

[37] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[38] Scipr Lab. 2012. libsnark. https://github.com/scipr-lab/libsnark.
[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[41] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vCNN: Verifiable
Convolutional Neural Network. IACR Cryptol. ePrint Arch. 2020 (2020), 584.

[42] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable structured
reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2111–2128.

[43] Gregory Maxwell. 2011. Zero Knowledge Contingent Payment. https://en.bitcoin.
it/wiki/Zero_Knowledge_Contingent_Payment.

[44] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.
[45] Henning Pagnia and Felix C Gärtner. 1999. On the impossibility of fair exchange

without a trusted third party. Technical Report. Technical Report TUD-BS-1999-02,
Darmstadt University of Technology.

[46] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Security and
Privacy. IEEE, 238–252.

[47] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual International Cryptology Conference. Springer,
129–140.

[48] Nicholas Pippenger. 1980. On the evaluation of powers and monomials. SIAM J.
Comput. 9, 2 (1980), 230–250.

[49] Srinath Setty. 2020. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. In Annual International Cryptology Conference. Springer, 704–737.

[50] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[51] Peter Todd and Amir Taaki. 2014. Paypub: Trustless payments for information
publishing on bitcoin. Github Project.

[52] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine
Shi. 2017. Sealed-glass proofs: Using transparent enclaves to prove and sell
knowledge. In 2017 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 19–34.

[53] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. 2018. Doubly-Efficient
zkSNARKs Without Trusted Setup. In 2018 IEEE Symposium on Security and
Privacy (SP). 926–943. https://doi.org/10.1109/SP.2018.00060

[54] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[55] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

http://diyhpl.us/~bryan/papers2/bitcoin/zkcp3.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/zkcp3.pdf
https://github.com/zcash-hackworks/pay-to-sudoku
https://github.com/zcash-hackworks/pay-to-sudoku
https://github.com/herumi/mcl
https://doi.org/10.1007/BFb0052332
https://github.com/scipr-lab/libsnark
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://doi.org/10.1109/SP.2018.00060

Computation. In Advances in Cryptology – CRYPTO 2019, Alexandra Boldyreva
and Daniele Micciancio (Eds.). Springer International Publishing, Cham, 733–764.

[56] Jiaheng Zhang, Weijie Wang, Yinuo Zhang, and Yupeng Zhang. 2020. Dou-
bly Efficient Interactive Proofs for General Arithmetic Circuits with Linear Prover
Time. Technical Report. Cryptology ePrint Archive, Report 2020/1247, 2020.
https://eprint. iacr. org

[57] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent
polynomial delegation and its applications to zero knowledge proof. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 859–876.

[58] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. vSQL: Verifying arbitrary SQL queries over
dynamic outsourced databases. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 863–880.

[59] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. A Zero-Knowledge Version of vSQL. (2017).

A Formal definitions

A.1 Discrete logarithm relation assumption

Given a security parameter 𝜆, for every polynomial-time adversary
A and for all n ≥ 1, the discrete logarithm relation assumption [11]
assumes that

Pr

∃ ai ≠ 0 ∧∑
ai · Gi = 0

G← Setup(1𝜆),

G1, . . . ,Gn
$← G,

a1, . . . , an ← A(G1, . . . ,Gn)

 ≤ negl(𝜆). (36)

where negl(𝜆) is a negligible function in the security parameter 𝜆.
We say

∑
i∈[n]

ai · Gi = 0 is a non-trivial discrete logarithm relation

between G1, . . . ,Gn. The discrete logarithm relation assumption
states that an adversary cannot find a non-trivial relation between
randomly chosen group elements. It degenerates to the discrete
logarithm assumption when n = 1.

A.2 Properties of Commitment schemes

A secure commitment scheme Com = (Setup,Commit,Check)
must satisfy the notion of correctness, binding and hiding.

Correctness: for any u ∈ Mpp, there is

Pr

[
Check(pp, c, u, r) = 1

pp← Setup(1𝜆),
(c, r)← Commit(pp, u)

]
= 1. (37)

Binding:Com is computationally binding if for every polynomial-
time adversary A

Pr

Check(pp, c, u0, r0) = 1 ∧
Check(pp, c, u1, r1) = 1 ∧
u0 ≠ u1

pp← Setup(1𝜆),
(c, u0, r0, u1, r1)← A(pp)

 ≤ negl(𝜆).

(38)
Hiding: Com is perfectly hiding if for every polynomial-time

adversary A

Pr

A(pp, c) = b

pp← Setup(1𝜆),
(u0, u1)← A(pp),

b
$← {0, 1},

(c, r)← Commit(pp, ub)

=
1
2
. (39)

A.3 Properties of interactive arguments of knowledge

The key security properties for an interactive argument of knowl-
edge Arg = (KeyGen,P,V) are

Completeness: Arg has perfect completeness if for every poly-
nomial time adversary A,

Pr

[
(s,w) ∉ R ∨
⟨P(𝜎 , s,w),V(𝜎 , s; 𝜌)⟩ = 1

𝜎 ← KeyGen(1𝜆),
(s,w)← A(𝜎)

]
= 1. (40)

Witness-extended emulation: Arg has computational witness-
extended emulation if for all deterministic polynomial-time P∗,
there exists a polynomial-time emulator E s.t. for every pair of
polynomial-time adversaries A = (A1,A2),�����������������

Pr

 A1(tr) = 1
𝜎 ← KeyGen(1𝜆),
(s,w)← A2(𝜎),
tr← ⟨P∗(𝜎 , s,w),V(𝜎 , s)⟩

– Pr

A1(tr) = 1 ∧
tr accepting⇒

(s,w) ∈ R

𝜎 ← KeyGen(1𝜆),
(s,w)← A2(𝜎),
(tr,w)← EO (𝜎 , s)

�����������������
≤ negl(𝜆), (41)

where E is given oracle access to O = ⟨P∗(𝜎 , s,w),V(𝜎 , s)⟩, which
permits rewinding to a specific point and resuming with fresh
verifier randomness from this point onwards.

Public-coin: Arg is said to be public-coin is all messages sent
by V are sampled uniformly at random and independent of P’s
messages.

Special honest-verifier zero knowledge: Arg has perfect spe-
cial honest-verifier zero knowledge (PSHVZK) if for every pair of
polynomial-time adversaries A = (A1,A2) and (s,w) ∈ R, there
exists a probablistic polynomial-time simulator Sim s.t.

Pr

 A1(tr,𝜎 , s) = 1
𝜎 ← KeyGen(1𝜆),
(s,w, 𝜌)← A2(𝜎),
tr← ⟨P(𝜎 , s,w),V(𝜎 , s; 𝜌)⟩

= Pr

 A1(tr,𝜎 , s) = 1
𝜎 ← KeyGen(1𝜆),
(s,w, 𝜌)← A2(𝜎),
tr← Sim(𝜎 , s, 𝜌)

 .
(42)

A.4 Properties of non-interactive zero-knowledge arguments
of knowledge

The key security properties for a non-interactive zero-knowledge
argument of knowledge Π are

Completeness: Π has perfect completeness if for every (s,w) ∈ R,

Pr

[
Verify(𝜎 , s,𝜋) = 1

𝜎 ← KeyGen(1𝜆),
𝜋 ← Prove(𝜎 , s,w)

]
= 1 (43)

Knowledge soundness: Π has computational knowledge sound-
ness if for every polynomial-time adversaryA there exists a polynomial-
time extractor Ext s.t.

Pr

[
(s,w) ∉ R ∧
Verify(𝜎 , s,𝜋) = 1

𝜎 ← KeyGen(1𝜆),
(s,𝜋 ;w)← (A||Ext)(𝜎)

]
≤ negl(𝜆), (44)

Zero-knowledge: Π has perfect zero-knowledge if for every pair
of (s,w) ∈ R and every adversary A = (A1,A2) there exists a
simulator Sim that

Pr

(s,w) ∈ R ∧
A1(𝜎 , s,𝜋) = 1

𝜎 ← KeyGen(1𝜆),
(s,w)← A2(𝜎),
𝜋 ← Prove(𝜎 , s,w)

= Pr

(s,w) ∈ R ∧
A1(𝜎 , s,𝜋) = 1

𝜎 ← KeyGen(1𝜆),
(s,w)← A2(𝜎),
𝜋 ← Sim(𝜎 , s)

 .
(45)

In random oracle model, Sim is allowed to run a partial simulation
of the random oracle [4].

B Arguments for inner products
The arguments in this section all refer to the Pedersen commitment
scheme in Section 2.2.

B.1 Inner product

We first consider a simple case that with commitments L, R ∈ G to
vectors l, r ∈ Fnp and commitment T ∈ G to scalar t ∈ Fp , a prover
P wants to demonstrate to a verifierV that ⟨l, r⟩ = t. In Figure 8
we show a simple protocol for the relation

L, R, T ∈ G;
l, r ∈ Fnp , t ∈ Fp ,

𝜄, 𝜌 ,𝜏 ∈ Fp

Check(pp, L, l, 𝜄) = 1 ∧
Check(pp, R, r, 𝜌) = 1 ∧
Check(pp, T , t,𝜏) = 1 ∧

⟨l, r⟩ = t

. (46)

It has completeness, witness-extended emulation and zero knowledge.
In particular, it achieves zero knowledge by introducing randomly
sampled mask vectors ld and rd .

Public input: commitments L, R, T ∈ G
P’s private input: l, r ∈ Fnp , t ∈ Fp , blinders 𝜄, 𝜌 ,𝜏 ∈ Fp

P : ld , rd
$← Fnp ,

(Ld , 𝜄d)← Commit(pp, ld), (Rd , 𝜌d)← Commit(pp, rd),

s1 = ⟨l, rd ⟩ + ⟨ld , r⟩, s2 = ⟨ld , rd ⟩,
(S1 ,𝜎1)← Commit(pp, s1), (S2 ,𝜎2)← Commit(pp, s2).

P → V : Ld , Rd , S1 , S2 .

V → P : e
$← Fp .

P : l′ = l + e · ld , r = r + e · rd ,
𝜄′ = 𝜄 + e · 𝜄, 𝜌′ = 𝜌 + e · 𝜌d , 𝜏 ′ = 𝜏 + e · 𝜎1 + e2 · 𝜎2 .

P → V : l′, r′, 𝜄′, 𝜌′,𝜏 ′.

V : L′ = L + e · Ld , Check(pp, L, l′, 𝜄′) ?= 1,

R′ = R + e · Rd , Check(pp, R, r′, 𝜌′) ?= 1,

T ′ = T + e · S1 + e2 · S2 ,

Check(pp, T ′, ⟨l′, r′⟩,𝛾 ′) ?= 1.

Figure 8: Zero-knowledge argument for inner product

B.2 Sum of inner products

Another common scenario is that for a group of vectors {li , ri ∈
Fnp}i∈[m] committed as {Li ,Ri ∈ G}i∈[m], and scalar value t ∈ Fp
committed as T ∈ G, P wants to demonstrate that t is the sum of
the m inner products

∑
i∈m⟨li , ri⟩ = t, or more formally

{Li , Ri ∈ G}i∈[m],
T ∈ G;

{li , ri ∈ Fnp}i∈[m],
{𝜄i , 𝜌i ∈ Fp}i∈[m],
t ∈ Fp ,𝜏 ∈ Fp

∧
i∈[m]

Check(pp, Li , li , 𝜄i) = 1 ∧∧
i∈[m]

Check(pp, Ri , ri , 𝜌i) = 1 ∧

Check(pp, T , t,𝜏) = 1 ∧∑
i∈[m]
⟨li , ri⟩ = t

. (47)

In Figure 9, we show how it can be reduced to the single inner

product case. With a random challenger z
$← Fp , one may compute

Public input: commitments {Li , Ri }i∈[m] , T

P’s private input: {li , ri ∈ Fnp }i∈[m] , t ∈ Fp , blinders {𝜄i , 𝜌i }i∈[m] ,𝜏 ∈ Fp

P : l(Z) =
∑

i∈[m]
li · Z i , r(Z) =

∑
i∈[m]

ri · Z–i ,

⟨l(Z), r(Z)⟩ = t +
∑

k∈[1–m,m–1]\0
tk · Zk ,

∀ k ∈ [1 –m,m – 1]\0, (Tk ,𝜏k)← Commit(pp, tk).
P → V : {Tk }.

V → P : z
$← Fp .

P : lz = l(z) =
∑

i∈[m]
zi · li , rz = r(z) =

∑
i∈[m]

z–i · ri ,

tz = t +
∑

k∈[1–m,m–1]\0
zk · tk ,

𝜄z =
∑

i∈[m]
zi · 𝜄i , 𝜌z =

∑
i∈[m]

z–i · 𝜌i ,

𝜏z = 𝜏 +
∑

k∈[1–m,m–1]\0
zk · 𝜏k .

P & V : Lz =
∑

i∈[m]
zi · Li , Rz =

∑
i∈[m]

z–i · Ri ,

Tz =
∑

k∈[1–m,m–1]\0
zk · Tk + T .

Public input: commitments Lz , Rz , Tz ∈ G,
P’s private input: lz , rz ∈ Fnp , tz ∈ Fp , blinders 𝜄z , 𝜌z ,𝜏z ∈ Fp

Figure 9: Argument for sum of inner products

linear combinations of {li}i∈[m] and {ri}i∈[m] as

lz =
∑
i∈[m]

zi · li , rz =
∑
i∈[m]

z–i · ri , (48)

and
⟨lz , rz⟩ =

∑
i∈[m]
⟨li , ri⟩ +

∑
k∈[1–m,m–1]\0

tk · zk . (49)

According to the Schwartz-Zippel lemma, apart from negligible
error 2m

|Fp | , the equation

⟨lz , rz⟩ = t +
∑

k∈[1–m,m–1]\0
tk · zk (50)

holds only if
∑

i∈[m]⟨li , ri⟩ = t. So a sum of inner products reduces
to a single inner product; then the protocol in Figure 8 applies.

B.3 When some vectors are public

A slightly different case is that of some of the vectors, e.g. {ri} are
public.

{Li ∈ G}i∈[m],
t ∈ Fp , {ri ∈ Fnp}i∈[m];

{li ∈ Fnp}i∈[m],
{𝜄i ∈ Fp}i∈[m]

∧
i∈[m]

Check(pp, Li , li , 𝜄i) = 1

∧∑i∈[m]⟨li , ri⟩ = t

. (51)

Omitting the operations related to commitments R and Ri in
Figure 8, Figure 9, it is not difficult to construct an argument for
relation (51).

B.4 Recursive reduction

The reduction in Section B.2 involves computing and committing
the cross terms tk for k ∈ [1 –m,m – 1]\0, which corresponds to
O(m2n) multiplications in Fp and 2m scalar multiplications in G.
The cost becomes substantial when m is large. In this section we

describe a recursive protocol, which accomplishes the same task
of reducing a sum of inner products into one single inner product,
but with way less computational cost.

Public input: commitments {Li , Ri }i∈[m] , T

P’s private input: {li , ri ∈ Fnp }i∈[m] , t ∈ Fp , blinders {𝜄i , 𝜌i }i∈[m] ,𝜏 ∈ Fp

While m > 1 : m← m/2

P : t+ =
∑
i∈m
⟨li , ri+m ⟩, t– =

∑
i∈m
⟨li+m , ri ⟩,

(T+ ,𝜏+)← Commit(pp, t+), (T– ,𝜏–)← Commit(pp, t–).

P → V : T+ , T– .

V → P : u.

P : for i ∈ [m]

li ← u · li + u–1 · li+m , ri ← u–1 · ri + u · ri+m ,
t ← t + u2 · t+ + u–1 · t– ,
𝜄i ← u · 𝜄i + u–1 · 𝜄i+m , 𝜌i ← u · 𝜌i + u–1 · 𝜌i+m ,
𝜏 ← 𝜏 + u2 · 𝜏+ + u–1 · 𝜏– .

P & V : for i ∈ [m]

Li ← u · Li + u–1 · Li+m , Ri ← u–1 · Ri + u · Ri+m ,
T ← T + u2 · T+ + u–2 · T– .

Public input: commitments L1 , R1 , T

P’s private input: l1 , r1 ∈ Fnp , t ∈ Fp , blinders 𝜄1 , 𝜌1 ,𝜏 ∈ Fp

Figure 10: Recursive argument for sum of inner products

The protocol takes logm rounds, where in each round onV’s
challenger u, P halves the number of vectors fromm intom′ = m/2
by

l′i = u · li + u–1 · li+m′ , r′i = u–1 · ri + uk · ri+m′ , (52)

that∑
i∈[m′]

⟨l′i , r′i ⟩ =
∑
i∈[m]
⟨li , ri⟩ + u2 ·

∑
i∈[m′]

⟨li , ri+d′⟩ + u–2 ·
∑

i∈[m′]
⟨li+d′ , ri⟩

=
∑
i∈[m]
⟨li , ri⟩ + u2 · t+ + u–2 · t–.

(53)
Summarizing all logm rounds, we have

l =
m∑
i=1

zi · li , r =
m∑
i=1

z–1i · ri , (54)

where zi is the i-th element vector of z with a binary counting
structure

z =

©«

u1 . . . ulogm
u–11 . . . ulogm

...
u–11 . . . u–1logm

ª®®®®®®¬
, (55)

and their inner product

⟨l, r⟩ =
∑
i∈[m]
⟨li , ri⟩ +

∑
k∈[logm]

u2k · t
+
k +

∑
k∈[logm]

u–2 · t–k . (56)

According to the Schwartz-Zippel lemma, except for negligible
error 4·logm

|Fp | , the equation

⟨l, r⟩ = t +
∑

k∈[logm]
u2k · t

+
k +

∑
k∈[logm]

u–2 · t–k (57)

holds only if t =
∑

i∈[m]⟨li , ri⟩.
This recursive reduction involves computing and committing

t+k and t–k for k ∈ [logm], costing O(mn) multiplications in Fp and
2 logm scalar multiplications in G, a significant boost as compared
to that of Section B.2.

C Composition properties of CP-NIZK arguments

C.1 Conjunction of relations with shared inputs

With a computationally binding commitment scheme Com and
CP-NIZK arguments ΠCom

0 and ΠCom
1 which respectively attest-

ing relations R0(s0, u, aux0) = 1 and R1(s1, u, aux1) = 1, with the
common input u committed as c, one can build a CP-NIZK argu-
ment ΠCom

∧ for conjunction R∧ s.t. R∧(s0, s1, u, aux0, aux1) = 1 iff
R0(s0, u, aux0) = 1 ∧ R1(s1, u, aux1) = 1:
• KeyGen(1𝜆)→ 𝜎 : outputs 𝜎 = (𝜎0,𝜎1), where

𝜎0 ← ΠCom
0 .KeyGen(1𝜆),

𝜎1 ← ΠCom
1 .KeyGen(1𝜆);

• Prove(𝜎 , s0, s1, c, u, aux0, aux1)→ 𝜋 : outputs 𝜋 = (𝜋0,𝜋1) where

𝜋0 ← ΠCom
0 .Prove(𝜎 , (s0, c), (u, aux0)),

𝜋1 ← ΠCom
1 .Prove(𝜎 , (s1, c), (u, aux1));

• Verify(𝜎 , s0, s1, c,𝜋)→ b: outputs b = b0 ∧ b1 where
b0 ← ΠCom

0 .Verify(𝜎 , (s0, c),𝜋0),

b1 ← ΠCom
1 .Verify(𝜎 , (s1, c),𝜋1);

The completeness ofΠCom
∧ follows directly from the completenesse

of ΠCom
0 and ΠCom

1 . For knowledge soundness, if the proof 𝜋 verifies,
one can construct an extractor Ext for ΠCom

∧ , which invokes the
extractor Ext0 and Ext1 for ΠCom

0 and ΠCom
1 and outputs witnesses

(u0, aux0) and (u1, aux1) s.t. except for negligible error,
Com.Check(pp, c, u0, r0) = 1 ∧ R0(s0, u0, aux0) = 1

∧ Com.Check(pp, c, u1, r1) = 1 ∧ R1(s1, u1, aux1) = 1.

Moreover, except for negligible possibility the identity u0 = u1
should hold, otherwise it breaks the binding property of Com. As
for zero-knowledge, one can simulate the proof 𝜋 by combining the
simulated proofs 𝜋0 and 𝜋1 from the respective simulators for ΠCom

0
and ΠCom

1 .

C.2 Disjunction of relations with shared inputs

For relation R(s, u) define R̂(s, u, t) s.t.

R̂(s, u, t) = 1 iff

{
R(s, u) = 1 ∧ t = 0,
R(s, u) = 0 ∧ t ≠ 0.

(58)

With this definition, the disjunction of relations is converted into
conjunctions. Specifically, for R0(s0, u) and R1(s1, u) with shared
inputs u, relation R∨ is defined as R∨(s0, s1, u) = 1 iff R0(s0, u) =
1 ∨ R1(s1, u) = 1, which is equivalent to

R̂0(s0, u, t0) = 1 ∧ R̂1(s1, u, t1) = 1 ∧ t0 · t1 = 0. (59)

C.3 Sequential composition of functions

Define relations Rg and Rh associated with functions g and h as

Rg(z, x,w) = 1 iff ∃ (x,w) s.t. g(x,w) = z,
Rh(s, z, y) = 1 iff ∃ (z, y) s.t. h(z, y) = s.

(60)

Let f be the composition of g and h s.t. f (x, y,w) = h(g(x,w), y).
Then the relation associatedwith f , namely∃ (x, y,w) s.t f (x, y,w) =
s, can be reduced to conjunction of Rg and Rh

Rg(z, x,w) = 1 ∧ Rh(s, z, y) = 1. (61)

D Proof for Theorem 3.1
Theorem 3.1 states that the argument in Figure 2 has perfect com-
pleteness, computational witness-extended emulation and PHVZK
under the discrete logarithm relation assumption.

Perfect completeness is straightforward.
To prove computationalwitness-extended emulation, we con-

struct an efficient extractor Ext, which runs P with n different y,
m different w, 2 different uk for k ∈ [0, logm] and 3 different e, in
total n ×m × 2 × log 2m × 3 valid proof transcripts. For simplicity,
we denote K = [1 – 2m, 2m – 1]\0.

Choose 2 transcripts for e ∈ {e(1), e(2)} and fixed w, y, {uk}. From
the transmitted l′, Ext can extract ld , 𝜄d s.t. Ld = ⟨ld ,G⟩ + 𝜄d · H . If
for any other set of challenges Ext extracts different ld , 𝜄d then it
yields a non-trivial discrete logarithm relation among (H ,G) w.r.t.
commitment Ld . With ld fixed, Ext can extract l, 𝜄 from transmitted
l′, 𝜄 ′ by l = l′–e · ld , 𝜄 = 𝜄 ′–e · 𝜄d . In case of Check(pp, L′, l′, 𝜄 ′) = 1, it
must hold that ⟨l,G⟩+𝜄 ·H = L′–e ·Ld = L, otherwise it yields a non-
trivial discrete relation among (H ,G) with respect to L. Similarly,
Ext can extract r, 𝜌 from transmitted r′, 𝜌 ′ s.t. ⟨r,G⟩ + 𝜌 · H = R′ –
e ·Rd = R. For inner product, in case of Check(pp, T ′, ⟨l′, r′⟩,𝜏 ′) = 1,
by 3 transcripts with different e ∈ {e(1), e(2), e(3)}, Ext can extract 𝜏
from transmitted 𝜎 s.t.

⟨l, r⟩ · U + 𝜏 · H =
logm∑
k=0

(
u2k · T

+
k + u–2k · T

–
k

)
. (62)

Choose 2 transcripts with different u0 ∈ {u(1)0 , u(2)0 } but same
uk for k ∈ [1, logm]. Correspondingly there are l ∈ {l(1), l(2)}, r ∈
{r(1), r(2)}, and 𝜏 ∈ {𝜏 (1),𝜏 (2)}. Ext is able to compute from l ∈ {l(1), l(2)}
two vectors l1, l2 s.t. l = u0 · l1 + u–10 · l2. Similarly, Ext recovers
r1, r2 s.t. r = u0 · r1 + u–10 · r2. Moreover, their inner products must
satisfy the equation

⟨l, r⟩ =
2∑
i=1
⟨li , ri⟩ + u20 · ⟨l1, r2⟩ + ⟨l2, r1⟩. (63)

Run the process recursively, in the k-th round picking two different
uk , after logm more rounds, Ext will be able to construct {li}i∈[2m]
and {ri}i∈[2m] s.t.

⟨l, r⟩ =
2m∑
i=1
⟨li , ri⟩ +

logm∑
k=0

©«u2k ·
2k∑
i=1
⟨li , ri+2k ⟩ + u–2k ·

2k∑
i=1
⟨li+2k , ri⟩

ª®¬ .
(64)

Equations (62) and (64) imply that
2m∑
i=1
⟨li , ri⟩ = 0. (65)

Otherwise they should yield a non-trivial discrete logarithm relation
between (U ,H).

Construct vector z from {uk}
logm
k=0 with a binary counting struc-

ture

z =

©«

u0u1 . . . ulogm
u–10 u1 . . . ulogm

...
u–10 u–11 . . . u–1logm

ª®®®®®®¬
, (66)

and note that l, r and {li , ri}i∈[2m] are related by the relation that

l =
∑

i∈[2m]
zi · li , r =

∑
i∈[2m]

z–1i · ri , (67)

where zi is the i-th element of z. Similarly, Ext can construct {𝜄i , 𝜌i}i∈[2m]
from 𝜄, 𝜌 s.t.

𝜄 =
∑

i∈[2m]
zi · 𝜄i , 𝜌 =

∑
i∈[2m]

z–1i · 𝜌i . (68)

When a transcript is accepting, it must hold that

L = ⟨l,G⟩ + 𝜄 · H =
∑

i∈[2m]
zi · ⟨li ,G⟩ +

∑
i∈[2m]

𝜄i · H . (69)

Recall the definition of L

L =
∑
i∈[m]

∑
j∈[m]

wi ·
(
zi · Aij + zi+m · Cij

)
· Vj . (70)

Equations (69) and (70) imply that for i ∈ [m]

⟨li ,G⟩ + 𝜄i · H = wi ·
∑
j∈[m]

Aij · Vj .

⟨li+m,G⟩ + 𝜄i+m · H = wi ·
∑
j∈[m]

Cij · Vj .
(71)

Assume Vj = ⟨vj ,G⟩ + 𝜈j · H , then it should hold that

li = wi ·
∑
j∈[m]

Aij · vj , li+m = wi ·
∑
j∈[m]

Cij · vj . (72)

Otherwise it yields a non-trivial discrete logarithm relation among
(H ,G). Similarly, there are

ri =
∑
j∈[m]

Bij · vj ◦ yn, ri+m = yn. (73)

According to (65), it must hold that∑
i∈[m]

wi ·©«
〈 ∑
j∈[m]

Aij · vj ,
∑
j∈[m]

Bij · vj ◦ yn
〉
–
〈 ∑
j∈[m]

Cij · vj ,yn
〉ª®¬ = 0.

(74)
Using a fixed y and m different w challenges, we can infer that〈 ∑

j∈[m]
Aij · vj ,

∑
j∈[m]

Bij · vj ◦ yn
〉
–
〈 ∑
j∈[m]

Cij · vj ,yn
〉
= 0. (75)

Then using n different y challenges, we can infer that(∑
j∈[m]

Aij · vj
)
◦
(∑
j∈[m]

Bij · vj
)
–

∑
j∈[m]

Cij · vj = 0. (76)

To prove PSHVZK, we construct an efficient simulator Sim that
produces a distribution of transcripts

tr = ({Vj }j∈[m],w, y, {T+
k , T

–
k , uk}k∈[0,logm],

Ld , Rd , S1, S2, e, l′, r′, 𝜄 ′, 𝜌 ′,𝜎 ′),
(77)

and the distribution is indistinguishable from that produced by an
honest P interacting with an honestV . Sim usesV’s randomness,
and runs as follows.

Vj
$← G, l′, r′

$← Fnp , 𝜄 ′, 𝜌 ′,𝜏 ′
$← Fp , S1

$← G

T+
k , T

–
k

$← G, ∀ k ∈ [0, logm],

L←
∑
j∈[m]

∑
i∈[m]

wi ·
(
si · Aij + si+m · Cij

)
· Vj ,

R←
∑
i∈[m]

∑
j∈[m]

(
si · Bij

)
· Vj +

∑
i∈[m]

si+m · ⟨1,G⟩,

Ld ← e–1 ·
(
⟨l′,G⟩ + 𝜄 · H – L

)
,

Rd ← e–1 ·
(
⟨r′ ◦ y–1n ,G⟩ + 𝜌 · H – R

)
,

S2 ← e–2 ·
(
⟨l′, r′⟩ · U + 𝜏 ′ · H

)
+ e–1 · S1

– e–2 ·
log 2m∑
k=0

(
u2k · T

+
k + u–2k · T

–
k

)
.

(78)

It is straightforward to see that such a proof produced by Sim will
be accepted by an honestV . l′, r′, 𝜄 ′, 𝜌 ′,𝜎 ′ are randomly distributed
over Fp . Due to the prefect hiding property of Pedersen commit-
ment, Ld ,Rd , {T+

k , T
–
k }, S1, S2 are also random elements of G, apart

from the relation defined by the verification procedure. Therefore,
the transcript given by (78) is indistinguishable from an honestly
computed proof with uniformly sampled challengers.

E Proof for Theorem 4.1
Theorem 4.1 states that ZKCPlus is secure if the embedded CP-NIZK
argument ΠCom satisfies completeness, computational knowledge
soundness and zero-knowledge, where by secure we mean:
• (buyer fairness) for any possibly malicious seller S∗, if its balance
increases with non-negligble probability, then the buyerB learns
some x′ s.t. 𝜙(x′) = 1;
• (seller fairness) for a seller S interacting with a possibly mali-
cious buyer B∗, if S’s balance does not increase, then except for
negligible probability, B∗ learns no information of x, apart from
what can be inferred from 𝜙 .
For buyer fairness, If B interacts with a possibly malicious S∗,

and S∗’s balance increases, then it must be the case that all three
of the following conditions are met
1. in the “validate” phase, B receives 𝜋 s.t.

ΠCom.Verify(𝜎 , (𝜙 , cx),𝜋) = 1;

2. by the end of the “deliver” phase, z, h and (𝜋z) s.t.

ΠCom.Verify(𝜎 , (z, h, cx),𝜋z) = 1;

3. in the “finalize” phase, J gets k s.t. H (k) = h.
Due to the computational knowledge soundness of ΠCom, for con-
dition 2. to hold, there exists an extractor Ext which except for
probability negl(𝜆), outputs (x′, k′)

Enck(x′) = z ∧ h = H(k′).

Similarly for condition 1. to hold, there must exist an extractor Ext
which except for probability negl(𝜆), outputs x′′ s.t.

𝜙(x′′) = 1.

Due to the binding property of Com, except for negligible probabil-
ity, there is x′′ = x′, and hence 𝜙(x ′) = 1. Assume that at the end
of protocol execution, S∗’s balance increases, but B does not learn
x′, then it must be the case that in the “finalize” phase J receives
some k different from k′ but H(k) = h. This breaks the collision
resistance of H.

In Section 4.2.2, we propose using commitment ck instead of h.
ThenB loses its funds but learns a wrong x iff in the “finalize” phase
J learns a pair (k, rk) s.t. k ≠ k′ but Check(pp, ck, (k · 1), rk) = 1.
This breaks the binding property of the commitment scheme Com.

For seller fairness, if S interacts with a possibly malicious B∗,
and S’s funds do not increase, we can construct a simulator SimB∗
which runs on input (cx, z, h), and for B∗ it is indistinguishable
from an honest seller S. The simulator SimB∗ works as follows:

1. in “validate” phase, SimB∗ runs ΠCom’s simulator Sim, sends
𝜋 ′ ← Sim(𝜎 , (s, cx));

2. in “deliver” phase, SimB∗ runs ΠCom’s simulator Sim, gets 𝜋 ′z ←
Sim(𝜎 , (z, cx, h)), sends (z, h,𝜋 ′z);

3. in “reveal” phase, SimB∗ aborts.

Due to the zero-knowledge property of ΠCom, 𝜋 ′ and 𝜋 ′z are in-
distinguishable from that sent by an honest S. Moreover, on the
premise thatS’s funds does not increase, eitherB∗ aborts, orS sees
a transaction tx posted by B∗ which contains some h s.t. H(k) ≠ h,
in which case S must abort in “reveal” phase.

Moreover, due to preimage resistance of H, it is infeasible for B∗
to infer k from h, so it cannot decrypt z to x. Similar conclusion
holds when we use ck instead of h, due to the hiding property of
Com.

F Pay to sudoku solution by ZKCPlus

Herein we describe how ZKCPlus adapts to the scenario of exchang-
ing sudoku solutions. Assume a sudoku puzzle of dimension D × D.
The protocol starts with the “commit” phase where the seller S
makes commitment to the solution x ∈ FD2

p . We’ve described how
the data-parallel CP-NIZK argument in Section 3 applies to the
“delivier” phase of ZKCPlus; what is not so obvious is that it also
applies to the “validate” phase for a sudoku solution as well. To
convince the buyer that x is correct, S has to prove that of the
D × D solution, each row ri , column ci , and sub-grid si for i ∈ [D]
is a permutation of digits {1, . . . ,D}, namely

isPermD(ri) = 1, isPermD(ci) = 1, isPermD(si) = 1 (79)

hold for all i ∈ [D]. This constitutes a data-parallel computation
with 3D copies of function isPerm running in parallel. Besides, S
has to prove that {ri} are consistent the committed x. It can be
accomplished by a CP-NIZK argument for inner products

⟨x,y⟩ –
∑
i∈[D]
⟨ri ,yi⟩ = 0, (80)

where y
$← FD2

p , and y = (y1|| . . . ||yD). The Schwartz-Zippel lemma
states that except for error D2

|Fp | , (80) holds iff x and {ri} are consistent.
Similar arguments apply to {ci} and {si}. In addition, S has to prove
that x is consistent with the puzzle setting p, that at position i
where the digit is open, there is xi = pi . With binary mask b ∈ FD2

p

where

bi =

{
1 position i is open,
0 otherwise,

(81)

the consistency between x and p translates into an equation x◦b =
p. Again S can use an inner product argument for

⟨x ◦ b, y⟩ = ⟨p, y⟩ (82)

to prove it.
With the “validate” phase and “deliver” phase separated, one

may optionally incorporate a data compression procedure. Since
each element of x is a digit in the range of [1,D], encoding it as
an element of field Fp is somewhat wasteful. Alternatively, with
l marking the bit length of Fp , and k = ⌈log(D + 1)⌉ marking the
bit length of each digit in [1,D], S may group t = ⌊l/k⌋ digits
into one element of Fp , and reform a solution x of length D2 into
x′ of length ⌈D2/t⌉. To justify the consistency between x and x′,

S may randomly sample y′
$← F ⌈D

2/t ⌉
p , and by a length t vector

2kt = [1, 2k , · · · , 2(t–1)k] construct y as

y = [y′1 · 2kt , · · · , y′⌈D2/t ⌉ · 2
k
t] ∈ F

⌈D2/t ⌉ ·t
p , (83)

where y′i is the i-th element vector of y′, and then employ an inner
product argument for

⟨x,y⟩ – ⟨x′,y′⟩ = 0, (84)

with x padded with zeros into the same length as y. With the
compression on, the “deliver” phase runs on x′ instead of x, which
is t times more efficient.

G Other evaluation results
We also measure computational cost of the on-chain arbiter in
ZKCPlus’s “finalize” phase, i.e., the gas cost of the smart contract.
In our protocol the contract takes charge of commitment opening
and concurrent transferring, and by storing a prepared group el-
ement, the computational complexity can be reduced to O(1) (see
Section 4.2.2 for details).

Our evaluation shows that the total on-chain gas cost of the smart
contract in “finalize” phase is quite economical, around 156,770 gas
independent of data size. Among all these consumed gas, trans-
ferring payment and updating the ledger’s state (i.e., writing to
storage) account for the majority of the computational cost by
102,082 gas, and commitment opening costs only about 15,900 gas,
10.14% of the total gas. Considering ZKCP, computing hash on chain
is cheaper than commitment opening, but actually it does not help
much to overall on-chain gas cost, since either hash computation or
commitment opening accounts for only a minor portion of overall
gas cost.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Commitments
	2.3 Zero-knowledge arguments of knowledge
	2.4 Commit-and-prove arguments
	2.5 Rank-1 constraint system
	2.6 MiMC block cipher
	2.7 Blockchain and smart contract

	3 Building block: CP-NIZK argument for data-parallel computations
	3.1 Argument construction
	3.2 Proof composition
	3.3 Performance

	4 The ZKCPlus protocol
	4.1 ZKCP revisited
	4.2 Construction of ZKCPlus
	4.3 Functionalities and extensions

	5 Applications
	5.1 Pay to CNN model
	5.2 Pay to SQL query

	6 Evaluation
	6.1 Implementation
	6.2 Experimental setup
	6.3 Comparison with ZKCP
	6.4 Performance of ZKCPlus applications

	7 Related Work
	7.1 Blockchain-based fair-exchange protocols
	7.2 Zero-knowledge proofs

	8 Conclusion
	References
	A Formal definitions
	A.1 Discrete logarithm relation assumption
	A.2 Properties of Commitment schemes
	A.3 Properties of interactive arguments of knowledge
	A.4 Properties of non-interactive zero-knowledge arguments of knowledge

	B Arguments for inner products
	B.1 Inner product
	B.2 Sum of inner products
	B.3 When some vectors are public
	B.4 Recursive reduction

	C Composition properties of CP-NIZK arguments
	C.1 Conjunction of relations with shared inputs
	C.2 Disjunction of relations with shared inputs
	C.3 Sequential composition of functions

	D Proof for Theorem 3.1
	E Proof for Theorem 4.1
	F Pay to sudoku solution by ZKCPlus
	G Other evaluation results

