Towards Efficient Heap Overflow Discovery

Xiangkun Jia'3, Chao Zhang™3, Purui Su' = Yi Yang', Huafeng Huang', Dengguo Feng'

LTCA/SKLCS, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences

{jiaxiangkun, yangyi, huanghuafeng, feng}@tca.iscas.ac.cn purui@iscas.ac.cn

Abstract

Heap overflow is a prevalent memory corruption vulner-
ability, playing an important role in recent attacks. Find-
ing such vulnerabilities in applications is thus critical for
security. Many state-of-art solutions focus on runtime
detection, requiring abundant inputs to explore program
paths in order to reach a high code coverage and luckily
trigger security violations. It is likely that the inputs being
tested could exercise vulnerable program paths, but fail
to trigger (and thus miss) vulnerabilities in these paths.
Moreover, these solutions may also miss heap vulnerabil-
ities due to incomplete vulnerability models.

In this paper, we propose a new solution HOTracer to
discover potential heap vulnerabilities. We model heap
overflows as spatial inconsistencies between heap allo-
cation and heap access operations, and perform an in-
depth offline analysis on representative program execu-
tion traces to identify heap overflows. Combining with
several optimizations, it could efficiently find heap over-
flows that are hard to trigger in binary programs. We im-
plemented a prototype of HOTracer, evaluated it on 17
real world applications, and found 47 previously unknown
heap vulnerabilities, showing its effectiveness.

1 Introduction

Memory corruption vulnerabilities are the root cause of
many severe threats, including control flow hijacking and
information leakage attacks. Among them, stack corrup-
tion vulnerabilities used to be the most popular ones. As
effective defenses [3, 12, 15, 19, 24, 35, 46, 47] against
stack corruption are deployed gradually, nowadays heap
overflow vulnerabilities become more popular. For ex-
ample, it is reported that about 25% of exploits against
Windows 7 utilized heap corruption vulnerabilities [28].
There are a lot of sensitive data stored in the heap, in-
cluding heap management metadata associated with heap
objects (e.g., size attributes, and linked list pointers), and
sensitive pointers within heap objects (e.g., pointers for
virtual function calls). It makes the heap a valuable target

2 Institute for Network Science and Cyberspace
Tsinghua University
chaoz@tsinghua.edu.cn

to attack. As the heap layout is not deterministic, heap
overflow vulnerabilities are in general harder to exploit
than stack corruption vulnerabilities. But attackers could
utilize techniques like heap spray [16] and heap feng-
shui [43] to arrange the heap layout and reliably launch
attacks, making heap overflow a realistic threat.

Several solutions are proposed to protect heap overflow
from being exploited, e.g., Diehard [4], Dieharder [34],
Heaptherapy [52] and HeapSentry [33]. In addition to
runtime overheads, they also cause denial of service, be-
cause they will terminate the process when an attack is
detected. So it is imperative to discover and fix heap over-
flows in advance.

In general, both static analysis and dynamic analysis
can be used to detect heap vulnerabilities. But static anal-
ysis solutions (e.g., [21, 36]) usually have high false pos-
itives, and are only fit for small programs. In addition
to its intrinsic challenge (i.e., alias analysis), static anal-
ysis may generate false positives because the heap layout
is not deterministic [27]. But for any specific execution,
the spatial relationships between heap objects are deter-
ministic. So, it’s easier and more reliable to use dynamic
analysis to detect heap vulnerabilities.

Online dynamic analysis is the mostly used state-of-
art heap vulnerability detection solutions. In general,
they monitor target programs’ runtime execution (e.g.,
by tracking some metadata), and detect vulnerabilities by
checking for security violations or program crashes. For
example, AddressSanitizer [40] creates redzones around
objects and tracks addressable bytes at run time, and de-
tects heap overflows when unaddressable redzone bytes
are accessed. Fuzzers (e.g., AFL [51]) test target pro-
grams with abundant inputs and report vulnerabilities
when crashes are found during testing.

These solutions are widely adopted by industry to find
vulnerabilities in their products. However, they all work
in a passive way and could miss vulnerabilities. To re-
port a vulnerability, they expect a testcase to exercise a
vulnerable path and trigger a security violation. Even if a

passive solution could generate a bunch of inputs to reach
a high code coverage and could catch all security viola-
tions, e.g., by combining AFL and AddressSanitizer, it
could still miss vulnerabilities. For example, it may gen-
erate a bunch of inputs to exercise a vulnerable path, but
fail to trigger the vulnerability in that path due to some
critical vulnerability conditions.

Moreover, multiple vulnerabilities may exist in one
program path. Passive solutions (e.g., fuzzers) may only
focus on the first one and miss the others. For example,
when analyzing a known vulnerability CVE-2014-1761
in Microsoft Word with our tool HOTracer, we found
two new heap overflows, in the exact same program path
which we believe many researchers have analyzed many
times. It shows that, even for a vulnerable path in the spot-
light, online solutions could not guarantee to find out all
potential vulnerabilities in it.

On the other hand, offline analysis solutions could ex-
plore each program path thoroughly and discover poten-
tial heap vulnerabilities in a more proactive way, e.g., by
reasoning about the relationship between program inputs
and candidate vulnerable code locations. For example,
DIODE [41] focuses on memory allocation sites vulner-
able to integer overflow which will further lead to heap
overflow, and then infers and reasons about constraints
of the memory allocation size to discover vulnerabilities.
Dowser [23] and BORG [31] focus on memory accesses
sites that are vulnerable to heap overflow, and guide sym-
bolic execution engine to explore suspicious buffer ac-
cessing instructions. However, neither of these solutions
accurately model the root cause of heap overflow, and thus
will miss many heap overflow vulnerabilities.

We point out that the root cause of heap overflow vul-
nerabilities is not the controllability of either memory al-
location or memory access, but the spatial inconsistency
between heap allocation and heap access operations. For
example, if a program first allocates a buffer of size x + 2,
and then writes x + 1 bytes into it, a heap overflow will
happen if attackers make x + 2 integer overflows but x + 1
not. It is nearly impossible to identify this heap over-
flow vulnerability when only considering heap allocation
or heap access operations.

In this paper, we propose a new offline analysis solution
HOTracer, able to recover heap operations, check spa-
tial consistency and discover heap overflow vulnerabili-
ties. It first records programs’ execution traces, no matter
the corresponding inputs are benign or not. Then it recog-
nizes heap allocation and heap access operation pairs and
checks whether there are potential spatial inconsistencies.
Furthermore, it checks whether the heap allocation and
heap access operations could be controlled by attackers or
not. If either one is controllable (i.e., tainted or affected
by inputs), HOTracer reasons about the path conditions
and spatial inconsistency to generate a PoC (i.e., proof-

of-concept) input for the potential vulnerability.

In this way, our solution could discover potential vul-
nerabilities that may be missed by existing online and of-
fline solutions. For online solutions, e.g., AFL and Ad-
dressSanitizer, they rely on delicate inputs to trigger the
vulnerabilities. Our solution could work fine as long as
the inputs could exercise any heap allocation and heap ac-
cess operations.

On the other hand, a combination of existing offline so-
lutions, e.g., DIODE and Dowser, seems to be able to
achieve the same goal as HOTracer. However, the com-
bination is incomplete. DIODE only considers heap allo-
cation vulnerable to integer overflows, and Dowser only
focuses on heap accesses via loops. Moreover, to make
the combination practical and efficient in the real world,
we have to solve several challenges.

First, there could be numerous execution traces to an-
alyze. Since recording and analyzing a trace is time-
consuming, we could not aim for a high code cover-
age. Instead, we analyze programs with representative use
cases, and explore significantly different program paths.

Second, we need to identify all heap operations from
the huge execution traces (without source code). Even
worse, many programs utilize custom memory allocators
and custom memory accesses. HOTracer utilizes a set
of features to identify potential heap operations. More-
over, we need to group related heap allocation and heap
access operations that operate on same heap objects into
pairs. But the number of such pairs is extraordinary large.
HOTracer reduces the number of pairs by promoting low-
level heap access instructions into high-level heap access
operations, and prioritizes pairs to explore pairs that are
more likely to be vulnerable.

Finally, it is challenging to generate concrete inputs to
trigger the potential vulnerability in a specific heap oper-
ation pair, especially in large real-world applications, due
to the program trace size and constraint complexity. HO-
Tracer mitigates this issue by collecting only partial traces
and concretizes inputs that do not affect the vulnerability
conditions.

We implemented a prototype of HOTracer based on
QEMU and analyzed 17 real world applications. HO-
Tracer found 47 previously unknown vulnerabilities,
showing that it is effective and efficient in finding heap
vulnerabilities. In addition to finding new vulnerabilities,
HOTracer could also be used to help identifying the root
cause of a vulnerability. As shown in Figure 1, HOTracer
could be used to triage vulnerabilities in crashes (or se-
curity violations) generated by online dynamic analysis
tools (e.g., fuzzers), or even further explore the same path
to discover vulnerabilities that may be missed.

In summary, we have made the following contributions.

e We proposed a new offline dynamic analysis solu-
tion, which is able to discover heap vulnerabilities

Testcase

\/_'

Traces

Dynamic
Analysis

Target
Application

Traces

~—"\

crash?
violation?

Vulnerability
Triage

I Online analysis (e.g., AFL, A itizer)

Figure 1: Applications of HOTracer. It relies on programs’ execution traces, which can be generated in many ways, to
discover heap vulnerabilities. It could discover heap vulnerabilities that are missed by online dynamic analysis tools
(e.g., AFL and AddressSanitizer), because the testcases may not cause any runtime crashes or security violations at
all, or only trigger shallow ones. It could also help clarifying the root cause (i.e., determine if it is a heap vulnerability

or not) of a crash or violation.

that are hard to detect and prone to miss in benign
traces, and able to help identifying the root cause of
crashes and security violations in suspicious traces.

e We pointed out the root cause of heap vulnerabilities
is inconsistency between heap operations. We also
proposed a method to accurately model heap vul-
nerability conditions, with heap objects’ spatial and
taint attributes (i.e., affected by inputs or not).

e We addressed several challenges, including path ex-
plosion, pair explosion and constraint explosion, to
make the solution practical and efficient.

e We implemented a prototype system, which is able
to handle large real world applications and generate
concrete inputs to prove heap vulnerabilities.

e We found 47 previously unknown vulnerabilities in
17 real world applications. Two of them are hidden
in the same path as a known vulnerability.

2 Background

In this section, we will illustrate the root causes of heap
overflow (and underflow) vulnerabilities, with a running
example demonstrated in Figure 2.

2.1 Running Example

Usually, a heap access operation is performed via a heap
pointer and a memory access size. In practice, the pointer
used for heap access is usually derived from a heap ob-
ject (e.g., pl at line 12 of Figure 2). As developers may
use pointer arithmetic to get new pointers, we further de-
compose pointers into two parts: pointer base addresses
and offsets. So a heap access operation is represented as
(ptr,of fsetpir,sizeaccess)-

It is worth noting that, the offset and size may be de-
rived from untrusted user input, either directly (e.g., the
offset size at line 8) or indirectly (e.g., the size computed
from the length of string p1->name at line 21).

On the other hand, a heap access operation’s target ob-
ject is represented by a memory range, i.e., an allocation

1 #define SIZE
2 struct OBJ{
3 char name[SIZE];

(1024-4)

4 void set_name(char* src, size_ t size){
5 if(size > SIZE) exit(-2);

6 memcpy (name, src, size);

7 // off-by-one, when size == SIZE

8 name[size]=0;

9 1}

10 };

11 int main(){

12 OBJ* pl = new OBJ();

13 OBJ* p2 = new OBJ();

14 // tainted: size and input

15 input = get_input(&size);

16 // vul #1: off-by-one if size=SIZE
17 pl->set_name(input, size);

18 // coalesce pl and p2, causing pl free.
19 free(p2);

20 // Vul #2: use after free

21 printf("pl name: %s\n", pl->name);
22 return 0;

23 }

Figure 2: Two sample heap vulnerabilities: an off-by-one
heap overflow and a use-after-free.

address and size. We refer obj to allocation address of an
object and represent it as (0b j, sizeyp ;).

The allocation address is usually a heap address re-
turned by memory management functions. However, the
allocation size may be derived from user inputs. Even if
it is not affected by inputs, e.g., developers use a constant
number (e.g., 1020 at line 3) that seems to be big enough
as the allocation size, the program may be still vulnerable
to heap overflow.

Although experienced developers may sanitize inputs
before using (e.g., line 5) to stop potential vulnerabilities,
it is error-prone to implement such checks. For example,
the check at line 5 misses one corner case where size
equals to SIZE. This corner case will lead to an off-by-
one vulnerability (i.e., a special heap overflow) at line 8,
which is called at line 17. It will overflow one byte after
the object p1, with value 0.

Although this off-by-one vulnerability could only over-
write one extra byte of 0, it is still exploitable. For exam-
ple, in the running example, it will cause a further use-

after-free vulnerability and lead to control flow hijacking.
Details are omitted due to the space limitation.

2.2 Root Cause Analysis

The root cause of heap overflow (or underflow) is that,
the heap access offset or size exceeds the target heap ob-
ject’s bound. More specifically, for a heap access via
(ptr,of fsetp,Sizeaccess) and target object (obj, sizeop;),
similar to related work SoftBound [30], we conclude that
there is an underflow vulnerability if:

ptr+offsety, + sizegecess < 0bj.

Given that heap pointers ptr always refer to base objects’
address obj, it equals to:

Off‘%‘tptr + sizeaccess < 0. (S1)

There is an overflow vulnerability if:
prr+offsetpy +Sizeaccess > 0bj + sizeqp ;.

ie.,

Offsetptr + Sizeaccess > Sizeobj- (S2)

It is worth noting that, o f fset,,;, may be a negative inte-
ger, but sizeqccess and size,y,j are always positive. If we use
of fsety, as unsigned integer, and assume its bit-width is
N, then Equation S1 becomes

of fsetpr +Sizeqccess >= N1 (S3)

Moreover, size,;; usually are smaller than 2¥~!. For
example, objects on 32-bit platform usually are smaller
than 23! = 2G bytes. So, Equation S3 implies Equa-
tion S2. So, Equation S2 always holds if there is a heap
overflow or underflow.

In other words, a heap overflow or underflow exists if
and only if:

)

where, range,ccess represents of fsety, + sizeqccess, and
range,; represents sizey;, and all values here are un-
signed. Without loss of generality, we use the term heap
overflow to represent both heap overflow and heap under-
flow in this paper.

Equation S depicts the inconsistency of spatial at-
tributes between heap allocation and heap access. Our
solution HOTracer uses it to build heap vulnerability con-
ditions.

rangegccess > rangeop;-

2.3 Observation

Even though no security violations are triggered by a be-
nign input, potential vulnerabilities may still exist in the
same program path. If user inputs could affect either heap
allocation or heap access along this execution trace, they

Access Range

co
= Object Range

»
—

Access Pointer Range

>
Target Object Range

Figure 3: Heap overflow vulnerabilities exist in the
shadow area, with the condition: rangegccess > rangegp;.

could change the spatial attributes of heap objects to sat-
isfy Equation S, cause spatial inconsistency between heap
allocation and heap access, and thus trigger a heap over-
flow vulnerability.

We illustrate this possibility using Figure 3. If we can
control the heap allocation size, we could make it smaller
than the heap access size (e.g., dotted line 1 in the figure),
to satisfy the Equation S and trigger heap overflows. If
we can control both the heap allocation size and the heap
access size, we could also make Equation S holds (e.g.,
dotted line 2).

3 Design

We aim to discover heap vulnerabilities with dynamic
analysis, without relying on testcases to directly trigger
vulnerabilities, and without source code. To achieve this
goal, we analyze programs’ execution traces offline, and
explore potential vulnerable states along the binary traces.

Furthermore, to make the solution efficient and practi-
cal, we select representative testcases to generate a limited
number of traces, perform spot checks on a small num-
ber of heap <allocation, access> operation pairs that are
more likely to be vulnerable, and concretize values in path
constraints and vulnerability constraints to speed up the
constraint resolving.

3.1 System Overview

Based on the observation discussed in Section 2.3, our of-
fline analysis tracks heap objects’ spatial attributes (e.g.,
size) and taint attributes (e.g., affected by inputs or not,
and affected by which input bytes) along the target execu-
tion trace.

Figure 4 shows an overview workflow of our solution
HOTracer. It first pre-processes the sample inputs by first
selecting representative inputs, and then feeds them into a
dynamic analysis component to generate execution traces
for each input. For a given trace, HOTracer traverses it
offline again to do some in-depth analysis.

Then, it identifies heap allocation and heap access op-
erations, and builds the heap layout. It also groups heap
operations that operate on same objects into pairs.

Identify Heap Operations

Allocation

Pre-process Traces

Input Selection > \f—V

Traverse
inputs Traces

Track Spatial Attributes

EEm—

Build Heap
Layout

Track Taint Attributes

Pair Heap
Operations

Build

Prove Vulnerabilities
Conditions

h Concretize Solve
Inputs Constraints

Build

PoC
inputs

Path
Constraints

Figure 4: Overview of HOTracer’s solution. It selects useful testcases and generate traces for each of them. Then it
recognizes heap operations in traces, tracks heap objects’ attributes and infer vulnerability conditions for each pair
of heap operations. It finally generates proof-of-concept (PoC) inputs to prove vulnerabilities by reasoning about

vulnerability conditions and path constraints.

Next, HOTracer tracks heap objects’ spatial and taint
attributes during execution traces. Based on these at-
tributes, it builds the vulnerability conditions using Equa-
tion S for each pair of heap <allocation, access> opera-
tions.

Finally, it solves the vulnerability conditions, along
with the path constraints, to check potential heap over-
flows, and generates concrete inputs to prove the existence
of them.

Following this process, we figure out there are many
challenges when making it work for real world applica-
tions, especially the usability and efficiency of this so-
lution. First, there would be numerous execution traces
to analyze. Second, there would be a large number of
heap <allocation, access> operation pairs in each execu-
tion trace. Third, the path constraints and vulnerability
condition constraints would be very large and complex to
solve, especially for real world applications. In the re-
maining of this section, we will discuss our design choice
to address these challenges.

3.2 Trace Generation Optimization
3.2.1 Testcase Selection

We may have too many input samples to analyze, and an-
alyzing a single program trace thoroughly is expensive.
On the other hand, many samples may exercise the same
program path, and thus it is not necessary to analyze all
of them. To mitigate this issue, we will only select repre-
sentative inputs to analyze.

We use different heuristics to select seed inputs based
on types of inputs. For known file types (e.g., multimedia
input files), we crawl some sample inputs from the Inter-
net. Then we parse the structure of these sample inputs,
and utilize the file format information to select represen-
tatives from each sub-type (e.g., tags in MP4 files). In
general, we will perform a min-set coverage analysis to
select a minimal set of testcases that covers all the sub-
types. Based on the trivial knowledge that different sub-
types of inputs will exercise different program paths, we
could get a set of representative execution traces.

For unknown file types, we use fuzzers to generate a

set of seed inputs, and distill the inputs to a minimum set
which covers most code blocks. In this way, we could also
get a set of representative testcases.

3.2.2 Trace Record and Replay

For each selected input, we need to feed it to the target
program, and get its runtime execution trace for further
offline analysis. It is critical to record the trace in a timely
manner. Otherwise, it may cause timeout issues and inter-
rupt the program execution.

We adopted the record-replay mechanism introduced
in PANDA [18] to generate traces with a low overhead.
In general, it has two phases to generate traces. In the
record phase, it takes a snapshot of the system before ex-
ecution, and records only changes at runtime. In this way,
the recording process costs low overheads. In the replay
phase, it interprets the snapshot and records to recover the
full execution trace for further offline analysis.

3.3 Heap Operation Model
3.3.1 Heap Allocation Recognition

Heap objects are created by allocation functions. By ana-
lyzing heap allocation functions, we can get the size and
address of heap objects, and update the spatial attributes
of heap objects.

However, it is challenging to recognize all heap allo-
cation functions accurately. In addition to standard APIs
(e.g.,malloc and free), developers usually develop cus-
tom heap allocators for different purposes. For exam-
ple, Firefox uses a custom heap management implementa-
tion Jemalloc, to solve its memory fragmentation prob-
lems. We studied some popular custom allocators (e.g.,
Jemalloc, Tcmalloc, MMgc), and figured out their work
flows share the same pattern as shown in Figure 5, and
they have the following features.

First, the most important feature is the return values of
memory allocators must be heap pointers.

A. An allocator always returns a pointer to the heap re-
gion, which is known for a specific platform.

Standard
Allocator

NO
IsValid NeedBig™_ __-HasEnoug __ UpdateCustom
Begin VS o VES
aramety Memol Space Management
NO-

Figure 5: High-level work flow of custom allocators.

YES:

Second, the allocation size processing is also an impor-
tant feature. It affects the memory allocation in several
ways.

B1 Custom allocators have to use standard allocation in-
terfaces to get memory from system when the allo-
cator is called for the first time, or when the internal
reserved memory pool is drained.

B2 Allocators usually keep different memory pools for
different allocation sizes to improve allocation effi-

ciency and ease the burden of boundary check.

B3 Allocators usually pad extra bytes at the end of ob-
jects to make objects aligned (with 4 bytes, 8 bytes
etc.).

B4 Allocators usually maintain internal heap manage-
ment structures and update them when allocating.
To avoid concurrency issues, the heap allocators will
lock the internal metadata before updating, e.g., by
calling EnterCriticalSection on Windows plat-

forms.

Third, memory allocation functions will be used by the
program in special ways.

C1 The return value of an allocator will be first used in
memory write operations before any read operations.

C2 A memory allocator will usually be invoked several
times in a specific execution trace.

C3 The allocator will return different values in differ-
ent invocations in most cases, unless the underlying
memory is released before allocation.

C4 Some heap allocation functions will initialize the ob-
jects (e.g., set to 0) before returning, to avoid poten-
tial bugs (e.g., use of uninitialized variables).

We first identify all functions satisfying feature A. Then
we point out ones satisfying at least one feature of B1,
B2, B3, B4. Finally, we recognize ones satisfying at
least one feature of C1, C2, C3, C4. In this way, we
could get a set of candidate heap allocators. Furthermore,
we will remove wrapper functions from the set.

It is worth noting that, identifying heap allocators in
this way may generate false positives and thus increase the
number of candidate pairs. From our evaluation, the false

ReturnHeap
Pointer

positive ratio is very low. On the other hand, this solution
in general will not generate false negatives. So it will not
prevent us from discovering potential heap vulnerabilities.

It is an open challenge to accurately identify all heap
allocators in binary programs. Existing works like Mem-
Brush [13] provide promising alternatives. MemBrush
uses features A and Cl1, together with some other mi-
nor features to identify candidate allocators. The major
difference is that, MemBrush uses dynamic online analy-
sis to repeatedly invoke and test each candidate allocator
with different parameters. However, the dynamic testing
process is slow, and its accuracy improvement over our
solution is not significant. So we only use the features
proposed here to do a quick recognition.

3.3.2 Heap Operation Pairs

After recognizing heap allocators, we could recover the
address and size attributes of heap objects and pointers,
and update them along the execute trace. We further re-
cover the heap layout with these spatial attributes, and
maintain the point-to relationship between heap objects
and pointers. So we could group heap allocation and heap
access operations into pairs.

We also track the taint attributes of heap objects and
pointers using taint analysis. Further we could check heap
operations pairs that could be controlled by attackers for
potential vulnerabilities.

3.4 Candidate Pair Reduction

There are too many heap allocation sites and heap access
operations even in one single trace, making the number
of candidate vulnerable pairs too large to analyze. As a
result, it is crucial to reduce the number of candidate pairs.

We first abstract low level heap access instructions to
high level operations to reduce the number of heap access
operations, and then prioritize candidate pairs based on
the likelihood of vulnerability in each pair. In this way, we
could limit the number of candidate pairs to a reasonable
number, and make further vulnerability discovery practi-
cal.

3.4.1 Heap Access Abstraction

We could easily recognize heap access instructions in the
trace after recognizing all heap pointers and heap objects.
A straightforward solution would be treating each heap
access instruction in the traces as a heap access operation,
and generating the pairs. However, it will explode the
number of heap operation pairs. For example, a buffer
copy could be compiled into a simple loop, or a REP-
prefixed instruction, which is represented with a sequence
of memory access instructions in the trace. Each iteration
of every heap access instruction will contribute to a new
heap operation pair. So the number of pairs grows rapidly
in this way.

Obviously, we should treat each one of such loops and
sequences of memory access as one heap access if possi-
ble, in order to reduce the number of heap operation pairs
without missing any potential vulnerabilities.

On the other hand, it is also helpful to recover high-
level heap access operations for other purposes. For ex-
ample, it could help us to identify the size of heap access
and the taint attributes of heap access operations.

Thus, we abstract heap access operations in the follow-
ing order to reduce the number of heap operation pairs.

D1 We first recover simple loops that are used for heap
access. We treat each occurrence of these loops in
the trace as one heap access operation, but not any
instruction within these loops.

D2 We then treat each sequence of heap access instruc-
tions that corresponds to one REP instruction in the
trace as a single heap access operation.

D3 We finally treat every remaining instruction in the
trace that accessed the heap as a heap access opera-

tion.
3.4.2 Heap Operation Pairs Sorting

The heap access abstraction phase greatly reduces the
number of candidate heap <allocation, access> operation
pairs. However, the number would be still big. We further
mitigate this issue by prioritizing the heap operation pairs.
Pairs that are more likely to be vulnerable will be explored
first in the following steps.

First, we prioritize pairs that have access operations of
type D2, since it is the most common case of heap buffer
access operations. Then we prioritize pairs that have ac-
cess operations of type D1.

Second, we will prioritize heap operation pairs depend-
ing on the ability of attackers, i.e., how well they could
affect the heap operations. As shown in Figure 3, attack-
ers may have different abilities to control heap operations.
The order we use to prioritize these pairs is as follows.

E1 The heap allocation and heap access size are affected
by different input bytes. It means attackers could
change the element of heap pairs independently and
make it inconsistent. This type is most vulnerable
according to our experience.

E2 Only the heap allocation but not the heap access op-
eration is affected by input bytes. This is also a pop-
ular case of heap overflow vulnerabilities. The fa-
mous I02BO vulnerability [41, 53] in general falls

into this category.

E3 Only the heap access but not the heap allocation op-
eration is affected by input bytes. It is also vulner-
able in this case if the access size exceeds the (con-
stant) allocation size.

E4 The heap allocation and heap access size are affected
by same input bytes. This type of heap operation
happens a lot in practice. For example, the pro-
gram allocates X bytes and later tries to access only
X bytes. In most cases, this type is not vulnerable.

ES5 Neither the heap access nor the heap allocation oper-
ation is affected by input bytes. Usually there should
be no heap overflow in this case, unless there is a
careless bug, e.g., the program allocates 100 bytes
and tries to access 101 bytes no matter what inputs
are given. Most tools are able to detect this kind of

vulnerability.

Furthermore, considering the ability of constraint
solvers, we will prioritize pairs that have simpler program
path constraints, simpler computation of heap operation
sizes, and shorter distance from allocation to access op-
erations. This prioritization enables us to explore simpler
pairs first and reason about them to discover vulnerabili-
ties.

3.5 Constraint Solving Optimization

After getting the candidate vulnerable heap operation
pairs, we could reason about each pair to confirm whether
it is vulnerable or not. Basically, we will collect the path
constraint and the vulnerability condition for each candi-
date pair, and then query the constraint solver to generate
PoC if possible.

However, the program path and vulnerability condition
constraints may be too complex for solvers to resolve. We
thus proposed several optimizations to mitigate this issue.

First, HOTracer will concretize irrelevant bytes in the
constraints. More specially, only bytes occurring in the
vulnerability conditions will be marked as symbolic, other
bytes will be replaced with concrete values used in current
execution trace. So we only need to solve parts of the
constraints.

Moreover, HOTracer only collects instructions from the
first related input point till the vulnerability points, and
performs symbolic execution on them. In this way, it
could greatly reduce the possibility of solver failure or
timeout.

4 Implementation

In this section, we will discuss implementation details of
HOTracer, and our practical experience with real world
programs. Our current prototype focuses on analyzing
Windows x86/x64 applications. But the techniques we
developed are general, and could be extended to other
platforms.

4.1 Collect Traces

HOTracer relies on program execution traces to discover
heap vulnerabilities. The diversity of traces affect the

number of program paths that will be analyzed. To gen-
erate traces, we first select input testcases for target pro-
grams, and then test them on target programs and record
their runtime executions.

4.1.1 Testcase Selection

The testcases could origin from different sources, e.g.,
fuzzers, existing benchmarks, or network crawlers, as
shown in Figure 1.

As discussed in Section 3.2.1, we will use parsers to
parse testcases of known input format, and select repre-
sentative testcases based on their sub-types. In general,
we trivially perform a min-set coverage analysis to select
a minimal set of testcases that cover all the sub-types. We
also use fuzzers to generate testcases of unknown input
format, and further distill the testcases based on their code
coverage information.

4.1.2 Trace Generation

Given an input testcase, we use our previous dynamic
analysis framework [32] to generate the execution trace.
Our dynamic analysis framework implements a record-
replay mechanism similar to PANDA [18], based on the
open-source whole-system hardware emulator QEMU, to
improve the performance of recording.

It takes a snapshot of the system before execution,
and records changes to the CPU state and memory in a
changelog file during the execution. In this way, it will
not slowdown QEMU much. After the runtime execution
finished, we could replay the snapshot and changelog file
to generate an execution trace, which is identical to the
runtime execution trace.

4.2 Identify Heap Operations

Given the trace, we need first identify heap allocation and
heap access operations, as well as the heap objects and
pointers in the trace, to detect potential heap overflow vul-
nerabilities.

4.2.1 Heap Allocation Recognition

Based on the heuristics described in Section 3.3.1, we
could identify most custom heap allocators with a high ac-
curacy. After identifying these heap allocators, we could
identify the sizes and addresses of heap objects along a
trace, from the arguments and return values of these al-
locators. Furthermore, by performing data flow analysis,
we could recognize all heap pointers and their mappings
to heap objects (described in Section 4.3).

4.2.2 High Level Heap Access

Rather than checking every heap access instruction in the
trace, we check some high level heap access operations
first, to reduce the number of candidate heap operation
pairs.

//EAX is a pointer, EBX is another pointer
SUB EAX, EBX
MOV ESI,EAX

//EAX is a pointer, ECX is another pointer
SUB EAX, ECX
MOV ESI,EAX

// ESI=(EAX-ECX)}+ECX-Ox4=EAX-0x4, not related to ECX
LEAES|, [ESI+ECX-0x4]

// ESI=(EAX-EBX)+EBX=EAX, not related to EBX
ADD ESI,EBX

(a) add (b) lea

Figure 6: Corner cases of taint propagation.

Heap Access of Type D1 It is common for developers
to use a loop to access a heap object. This is also a com-
mon source of heap overflow vulnerabilities. A loop in
the trace is a continuously repeated sequence of instruc-
tions ending with jump instructions, unlike its representa-
tion in the control flow graph (i.e., a backward edge) [8].
HOTracer takes the sequence of instruction addresses in
the trace as a string, and identifies loops by searching for
continuously repeated sub-strings. In this way, we could
identify loops with one sequential scanning.

For each loop, we also care about whether its execu-
tion is affected by inputs. We infer the relationship be-
tween the count of loop iterations and inputs at the loop
exit point (i.e., a conditional branch instruction). We also
count the number of iterations in current trace to infer the
access range of a loop.

Our current prototype could find nested loops but not
complicated overlapped loops [45, 50]. We leave it as a
future work.

Heap Access of Type D2 1t is easy to recognize REP
instructions in a trace, so does the access size (i.e., ECX),
by comparing the instruction sequence in the trace with
instructions in the original binaries.

4.3 Track Spatial Attribute
4.3.1 Build Heap Layout

From the execution trace, we know the exact values of
heap pointers and addresses of objects, and thus we could
easily get the layout of the heap. During the data flow
analysis, we track heap objects’ spatial attributes accord-
ing to allocation operations. The attributes are initialized
to allocation sizes when objects are allocated. When deal-
locating, their spatial attributes are updated to 0. In this
way, we could get the heap state at any moment.

4.3.2 Pair Heap Operations

As we pointed in Section 2.2, we analyze heap operations
in pairs based on the point-to relationships between point-
ers and objects. However, it is not trivial to infer whether
a pointer should point to an object, because the pointer
value may exceed its expected object’s memory region
(e.g., due to heap overflow). In other words, we could
not rely only on the values of heap pointers and addresses
of objects.

So we perform an analysis to track pointers’ prove-
nances, in order to build the accurate heap layout. In gen-
eral, when a pointer is set to point to an allocated object,
we set the base object as this pointer’s provenance. This
provenance will be propagated along the program trace,
e.g., via pointer arithmetic operations, to other pointers.
The provenance of a pointer will be updated when it is
reset. This provenance analysis is similar to classic taint
analysis [6].

As a result, by querying a pointer’s provenance, we
could always infer which object it should point to, even
if the pointer’s value is overflowed. For the target object
at access points, we could easily get its allocation opera-
tion. In this way, we group specific heap access and heap
allocation operation into a pair, and further evaluate their
spatial attributes to discover potential heap overflows.

Under-taint Issue: However, there is a corner case dur-
ing the taint (i.e., provenance) propagation for pointers.
For example, the SUB instruction in Figure 6a will usually
clean the taint attribute of the pointer (i.e., EAX), since
the result is constant and is not a pointer any more [6].
However, this offset could be later used to compute an-
other pointer (e.g., the final EST register) which should be
tainted. As a result, the new pointer will take a wrong
attribute from EBX rather than EAX.

We propose a new solution to mitigation this is-
sue. More specifically, we tag the destination register
EAX of the SUB instruction with a set of taint attributes
(provenancegax , —provenancegpy). It is worth noting
that, objects’ addresses (i.e., pointers’ provenances) are
usually lower than a specific value on a given platform,
8o —provenancegpy is different from any normal taint at-
tribute. We can detect this abnormal attribute when it is
used in instructions like ADD and LEA, and recover the cor-
rect taint attribute of operands.

4.4 Track Taint Attribute

HOTracer tracks taint attributes of different values (e.g.,
sizes of heap objects, offsets of heap pointers etc.). In
general, it performs a fine-grained taint propagation anal-
ysis to track each value’s source (i.e., specific bytes in the
input).

We use the same taint analysis solution as previous
provenance analysis, to track values’ taint attributes, i.e.,
which input bytes affect the target values. What’s dif-
ferent is that, we use the position of input bytes as taint
attributes, and propagate these attributes along the trace.

However, sometimes the inputs will not directly af-
fect values used in heap access or allocation operations.
For example, programs may use strlen or other custom
functions to infer some values (e.g., length) of the inputs,
and use them as size to allocate memory. In this case, the
heap allocation is indirectly affected by the inputs. These
inferred values are control dependent on the inputs. For

example, the return value of strlen control-depends on
the input string, i.e., whether the input character equals to
\0’ or not.

Classical dynamic taint analysis solutions usually will
not propagate taint information for control dependen-
cies [39], due to the concern of taint propagation effi-
ciency. Instead, HOTracer performs an extra backward
analysis, to search for the definition points of heap allo-
cation sizes. Given the high-level loop and branch infor-
mation we recovered, if we find out the definitions are
control-dependent on the inputs, we will mark the alloca-
tion sizes as tainted.

Furthermore, the traces we collected only include user-
space instructions. So some data flow will be missing
when the kernel kicks in. HOTracer will check value of
registers before and after the executed instructions (e.g.,
sysenter). If the value of any register other than the des-
tination operand has changed, a potential data flow miss-
ing is found. In this case, we will clean the taint attributes
of the registers, to avoid false positives. Another choice is
using summary information of syscalls, to propagate the
taint attributes for kernel execution. However, it requires
a lot of engineering work to correctly summarize the side-
effects of all syscalls.

4.5 Build Vulnerability Condition

For each pair of heap access and heap allocation opera-
tions, we assume the heap access has attributes range,ccess
and the target heap object has attributes range,;,

1. a heap overflow exists if rangegccess > range,p; is
true for current testcase, i.e., Equation S holds.

2. a potential heap overflow exists if either range ccess
or range,p,; is tainted, which may make Equation S
hold.

In case 1, we can confirm the existence of heap over-
flow in current trace and show the root cause of heap over-
flows. In case 2, we could infer the conditions of po-
tential heap vulnerabilities and reason about these con-
ditions. More specially, by performing symbolic execu-
tion, we can build the constraints between input bytes and
the spatial attributes of range,cc.ss and range,;,;. Together
with the vulnerability Equations S, we can build the vul-
nerability conditions.

First, for a heap access operation, if the heap access’
range is larger than the object’s range, then a heap over-
flow is confirmed. It means the original input already trig-
gers the vulnerability.

It is worth noting that, heap management functions will
also access heap objects’ metadata that are out of the ob-
jects” bound. But these overflow access operations are
benign. So we will rule out these heap access when dis-
covering heap vulnerabilities.

Second, for a heap access, if the heap pointer’s size
is not larger than the object’s size, we will discover po-
tential heap overflow by checking their taint attributes.
There are also three cases: (1) if only the object’s size
or the pointer’s size is tainted (e.g., line 1 and line 3 in
Figure 3), there may be a heap overflow; (2) if both the
object’s size and pointer’s size are tainted (e.g., line 2 in
Figure 3), there may be a heap overflow too. (3) neither
the object’s size nor the pointer’s size is tainted, then there
are no heap overflow in this heap access, unless there is
an instinctive bug that could be triggered no matter what
inputs are given.

For the case (2), i.e., when the object’s size and
pointer’s size are both tainted, there are also two sub-
cases: they rely on different input bytes; or they rely on
same input bytes. In the former case, usually there will be
some heap overflows. In the latter case, there may be no
heap overflows at all. For example, if we allocate a heap
buffer with size X from input, and access heap with size
X, then there are no overflows. But vulnerabilities like in-
teger overflow may cause the allocation size mismatches
with the access size, even though they rely on same inputs.
HOTracer will check the existence of integer overflow in
this case (i.e., I0O2BO [41, 53]).

4.6 Prove Heap Vulnerabilities

After building the vulnerability conditions, the last step is
to find concrete inputs that trigger the vulnerabilities. We
use the widely used constraint solver Z3 [17] to resolve
the constraints and generate inputs.

4.6.1 Build Path Constraints

Inputs satisfying only the vulnerability conditions may
not trigger vulnerabilities at all, since (1) it may not reach
the vulnerable point that we analyzed, because a different
program path is exercised, and (2) it may be blocked by
some input validations deployed in the program.

So, HOTracer will also collect the program path con-
straints, i.e., how the input bytes affect the branches in the
trace. By feeding the vulnerability conditions and pro-
gram path constraints to the solver, we could get inputs
that will exercise the same path and trigger heap vulner-
abilities, or confirm that there are no heap vulnerabili-
ties along this path, or fail because the state-of-art solvers
could not solve the constraints.

4.6.2 Constraint Simplification

As discussed in Section 3.5, HOTracer will only collect
path constraints related to bytes used in the vulnerabil-
ity conditions, and use concrete values for other input
bytes used in the path constraints, to simplify the path
constraints.

We also notice that, programs may read the same input
bytes multiple times via multiple functions. For example,

some programs use the first read operation for preproc-
cessing, and a second read to process the content. To re-
duce the complexity, we will only collect path constraints
from the last relevant read to the vulnerability points. If
inputs generated from these constraints could not trigger
the vulnerability, then we will include path constraints
starting from previous reads.

4.6.3 Mutate and Verify

Since our vulnerability conditions only consider heap
overflow, the concrete inputs generated by constraint
solvers (called candidate PoC inputs) may not trigger
crashes or other severe consequences.

On the other hand, inputs that could trigger crash would
make further analysis easier, e.g., debugging and bug fix-
ing. So, HOTracer performs another step to filter the can-
didate PoC inputs, to find out inputs that could trigger
crashes.

The idea is that, we will compare the candidate PoC
input with the seed input, to find out the input bytes that
have changed. Then we use a simple fuzzer to mutate only
these bytes with simple mutation strategies, e.g., mini-
mum and maximum signed or unsigned integers, common
values like 0 and 1, and random bytes etc. We will test
each mutated input, to see whether it could trigger a crash.

For any candidate PoC input, if one of its mutations
triggers a crash, HOTracer will report a heap vulnerability
together with this mutation input. Otherwise, HOTracer
will ignore this candidate PoC input.

It is worth noting that, the ignored candidate PoC in-
puts may still be valuable. The associated vulnerability
instructions could be exploited with advanced exploits.
We leave it as a future work to analyze these candidate
PoC inputs and whether they are exploitable.

5 Evaluation

In this section, we present the evaluation of our solu-
tion HOTracer. Our prototype implementation is based on
our existing QEMU-based dynamic analysis framework.
The seed selection component takes about 40 LOC of
shell scripts, the heap operation identification component
takes about 1.3K LOC of C++ code, the heap attributes
tracking and vulnerability condition building components
take about 8K LOC of C++ code, and the vulnerability
proving component takes about 9K LOC of C++ code.
The analysis environment is a Ubuntu 12.04 system run-
ning on a computer with 12G RAM and Intel Xeon (R)
CPU E5630 @ 2.53GHz*8.

5.1 Effectiveness

Table 1 shows previously unknown vulnerabilities found
by HOTracer in our experiment. The target applications
we tested are popular applications in Windows 7 operat-
ing system, including word document processing applica-

Table 1: Zero-day vulnerabilities found by HOTracer.

Table 2: Known heap overflow vulnerabilities replayed
and validated by HOTracer.

ID (count) | Application | version input | bug status

new (1) Feiq 3.0.0.2 tep reported 1D Application version input

new (1) WMPlayer 12.0.7601 mp4 | reported CVE-2010-1932 | Xnview 1.97.4 mbm

new (3) VLC 2.2.1 mp4 | partially fixed CVE-2011-5233 | irfanview 4.30 tif

new (1) VLC 224 mp4 | reported OSVDB-83812 | ZipltFast 3.0 pro zip

new (2) iTunes 12.4.3.1 mp4 | reviewing CVE-2014-1761 | Microsoft Word | 2010 rtf

new (1) ffmpeg c0cb53¢ mp4 | fixed & CVE EDB-ID-39353 | VLC 22.1 mp4

new (6) QQPlayer 3.9(936) mp4 | rewarded EDB-ID-17363 | 1ClickUnzip 3.0.0 zip

new (1) QQMusic 115 mda | rewarded CVE-2010-2553 | MediaPlayer 9.00.00.4503 | avi

new (1) BaiduPlayer | 5.2.1.3 mp4 | reviewing CVE-2015-0327 | Adobe Flash 13sa swf

new (2) RealPlayer 16.0.6.2 mp4 | fixed & CVE

new (1) MPlayer r37802 mp4 | reported

new (3) KMPlayer | 3.9.1.138 mp4 | partially fixed the vulnerabilities, except the benign testcase.

new (4) KMPlayer | 4.1.1.5 mp4 | reported Table 2 shows 8 known vulnerabilities in 8 applica-

new (7) Potplayer 1.6.60136 | mp4 | partially fixed o HOTracer is able to discover 6 of them on its own,

hew g gg;{a’;yref ;2-62949 fn’gj izgglrftz;‘ except vulnerabilities CVE-2015-0327 and CVE-2010-
: S 2553.

pew 8; M R B evoned For vulnerability CVE-2015-0327 in Adobe Flash, it

new (2) OpenOffice | 4.1.2 doc reviewing requires to override a standard API, causing it behave dif-

new (1) IrfanView 4.41 m3u | fixed ferently at heap allocation site and heap access site. Cur-

tions Microsoft Word and OpenOffice, video players KM-
Player and potplayer, and photo viewers IrfanView etc.

These applications are tested within QEMU, with some
selected testcases (Section 5.5). The traces collected by
QEMU are then analyzed by HOTracer. Although we
only demonstrated Windows applications here, the solu-
tion we proposed could be extended to other platforms
(including Linux on x86, Android on ARM), since they
are both supported by QEMU and our solution is general.

As shown in the table, we have found 47 previously
unknown vulnerabilities in 17 applications (of latest ver-
sions). All vulnerabilities are validated with proof-of-
concepts (i.e., PoC) inputs that could trigger crashes.

It is worth noting that, all vulnerabilities here are inves-
tigated manually and confirmed to be unique. We use two
factors to distinguish vulnerabilities, i.e., the overflow in-
structions along with the call context, and the key input
bytes’ roles (i.e., structure fields) in the input structures.

5.2 False Negatives and False Positives

In general, it is impossible to evaluate false negatives of
a vulnerability detection solution, since we do not have
the ground truth of how many vulnerabilities exist in pro-
grams.

Instead, we chose several known vulnerabilities and
their corresponding program paths as a ground truth. To
evaluate the false negatives, we gave some benign test-
cases that exercise the same program paths as the target
vulnerabilities to our tool, and then used it to analyze
these programs. It is worth noting that, in this experi-
ment, HOTracer does not have any other knowledge of

rently, our solution could not build and solve this type
of constraints. For vulnerability CVE-2010-2553 in Me-
dia Player, our prototype system missed a type-D1 heap
access (i.e., a loop), but only paid attention to one type-
D2 heap access (i.e., a REP instruction) inside this loop.
It shows that it is necessary to further improve our loop
recognition algorithm to deal with complex real world ap-
plications. However, HOTracer could validate these two
vulnerabilities if given the correct PoC samples.

More interestingly, when analyzing the program path
(with a benign input) of the vulnerability CVE-2014-1761
in Microsoft Word 2010, HOTracer found two new vul-
nerabilities, which even affect the latest version of Mi-
crosoft Word. We believe for known vulnerabilities like
CVE-2014-1761, vendors and researchers have already
performed many thorough testings. It thus shows that
even for known vulnerabilities in spotlight, existing so-
lutions may still miss potential vulnerabilities.

On the other hand, since HOTracer only reports vulner-
abilities with proof-of-concept (PoC) testcases that could
trigger crashes, there are no false positives. However, it
is possible that some reported vulnerabilities are not ex-
ploitable.

5.3 Bug Reports

We reported all the new vulnerabilities to vendors, and
most vendors are very active in responding. As shown in
Table 1, three vendors have completely fixed their prod-
ucts, i.e., IrfanView, ffmpeg and Realplayer. Two of them
have already been assigned with CVE ID .

During our experiments, we found that some tested pro-
grams (e.g., VLC, KMPlayer) have released new updates

ICVE-2016-6164 for ffmpeg, CVE-2016-9931 for RealPlayer

Table 3: Metrics of the analysis performed by HOTracer, including the size of snapshot, changelog, traces and con-
straints, the instruction count in the traces, and the time spent to record, replay, analyze and extract traces.

record-replay phase analysis phase resolve phase

ID snapshot | changelog | record | replay || trace trace analysis || relevant | constaint | extract

size size time time size #instr. time #instr. file size time
CVE-2010-1932 | 430.6MB | 36.6MB 29s 486s 2.8GB 12.3M 99s 619 192KB 37s
CVE-2011-5233 | 516.1MB | 18.5MB 37s 738s 9.8GB 43.9M 112s 795 251KB 96s
OSVDB-83812 819.3MB | 13.6MB 83s 1257s || 31.9GB 142.5M | 787s 10 4.3kB 52s
CVE-2014-1761 | 855.3MB | 52.3MB 178s 3712s || 205.8GB | 918.6M | 6478s 183 17.8KB 198s
EDB-ID-39353 507.6MB | 15.0MB 62s 271s 8.2GB 36.7M 10s 3082 331.1KB | 674s
EDB-ID-17363 500.2MB | 32.6MB 70s 889s 3.1GB 13.7M 45s 2313 191.2KB | 502s
CVE-2010-2553 | 282.5MB | 22.9MB 100s 806s 10.7GB 47.6M 565s - - -
CVE-2015-0327 | 610.8MB | 13.8MB 34s 682s 25.2GB 112.4M | 709s - - -

for the bugs we reported. We then applied HOTracer to
the latest version and found that some vulnerabilities still
exist. In other words, three vendors have only partially
fixed their products.

Moreover, vendors of QQPlayer and QQMusic have
confirmed the vulnerabilities in their products and re-
warded us for the report. Five other vendors including
Microsoft, Apple, and OpenOffice are still reviewing the
issues.

In summary, vendors are willing to fix security bugs in
their products. However, during the communication, we
also found that vendors were more willing to fix vulner-
abilities which are sure to be of high risk or exploitable.
For vulnerability reports with only PoC crash inputs, they
do not take it seriously, especially for larger companies.
We believe one reason of this kind of negative attitude is
that, there are too many vulnerability reports waiting in
their pipelines. In other words, there are too many vulner-
abilities (or bugs) in daily applications, calling for solu-
tions like HOTracer to help.

Due to the time limit, we only manually checked 10 of
these vulnerabilities to see whether they are exploitable.
In general, it is challenging to conduct exploits against
a vulnerability, especially in the context of defenses de-
ployed in modern platform. We found 9 of them are likely
exploitable.

5.4 Efficiency

As we discussed, HOTracer first takes a snapshot of the
system, and then records changelog during execution. Af-
ter that, HOTracer replays the snapshot and changelog to
generate traces, and then performs analysis on the traces
to find potential heap vulnerabilities. Finally, it extracts
relevant instructions from the trace and build the con-
straints to generate concrete inputs to prove vulnerabili-
ties. Table 3 shows some detailed metrics of these differ-
ent phases.

As we can see from the table, the record-replay mech-
anism works well. It will not break the target applica-

tions’ functionality, e.g., causing program timeout due
to a heavy runtime monitoring or recording. The traces
of real world applications are usually very large (e.g.,
205GB for CVE-2014-1761 in Microsoft Word), much
larger than the snapshot and changelog size. It also takes
much longer (e.g., 20 times longer) time to replay and
generate the traces than recording only changelogs.

HOTracer performs the offline analysis, including heap
attributes tracking and vulnerability modeling, on the
traces to discover heap vulnerabilities. As shown in the
table, the offline analysis time is close to the replay time,
varying from 2 minutes to 50 minutes. The analysis time
depends on the number of instructions in the traces. The
more instructions a trace has, the more time the analysis
needs.

After identifying potential heap vulnerabilities, HO-
Tracer will extract instructions relevant to the candidate
vulnerabilities and build the constraint files to query con-
straint solvers (e.g., Z3). As shown in the table, it requires
0.5 to 15 minutes to extract the related instructions and
build constraints, depending on the number of relevant in-
structions.

And for the vulnerability CVE-2015-0327 in Adobe
Flash and CVE-2010-2553 in Media Player, our proto-
type fail to find out the vulnerability. So we do not have
any data for its resolving phase in the table.

5.5 Testcases Selection

The testcases we use will affect the vulnerability assess-
ment HOTracer could provide to target applications. In
addition to utilizing fuzzing tools like AFL to generate
testcases, we also crawl existing databases to find test-
cases.

In our experiment, we searched a public database 2 of
multimedia files with more than 10,000 testcases. Among
them, there are more than 800 MP4/MOV files in the
database. All of them contain the tag (i.e., sub-type) moov,

Zhttp://samples.libav.org/

and only a few files have the tag avcC and trun. By pars-
ing the structures of these files and performing a min-set
coverage analysis, we reduce the number of files to 20,
without losing the path coverage.

5.6 Details of Trace Analysis

Table 4 and 5 show some detail evaluations of our trace
analysis. Due to the space limitation, only parts of the
results are shown in these tables.

After pre-processing, HOTracer selects input testcases
and generates corresponding program traces. As shown
in the table, the traces’ sizes are relatively large, but HO-
Tracer could still analyze them.

HOTracer groups heap allocation and heap access oper-
ations into pairs to discover potential heap vulnerabilities.
Each pair operates on a same heap object, and is related to
a set of input bytes. The number of heap operation pairs
is thus critical to the efficiency of our solution. We will
further demonstrate that the optimizations we performed
greatly reduced the number of heap operation pairs.

Accuracy of Heap Allocation Recognition. The accu-
racy of the heap allocation affects the number of heap op-
eration pairs. Table 4 shows the accuracy of our recogni-
tion algorithms.

On the left of the table, it shows some statistics of some
sample traces that are analyzed, including the snapshot
and record size, as well as the record and replay time.

On the right of the table, it shows the time cost to iden-
tify these heap allocators. In general, the identification
time is related to the trace size. A larger trace usually
consumes more time to identify heap allocators in it.

When considering the feature A (i.e., returning a heap
pointer) in Section 3.3.1, we could identify a set of can-
didate allocators, e.g., 43 allocators in Microsoft Word
2010. Further, after we apply other features, the set of
candidate allocators becomes smaller. For example, after
considering the group B features (i.e., use of allocation
size), we only get 11 candidate allocators. Furthermore,
only 5 candidate allocators are left after considering the
group C features (i.e., use of the returned pointer).

We also did some manual analysis to validate the ac-
curacy of these candidate allocators. Among the 5 candi-
date heap allocators in Microsoft Word, we figured 4 of
them have a name indicating that they are allocators. Af-
ter a further reverse engineering analysis, we confirmed
that they are heap allocators. Only one extra function is
wrongly identified as a heap allocator in this case.

Abstraction of Heap Access Operations. By recover-
ing the high-level heap access operations, we could re-
duce the number of heap operation pairs. Table 5 shows
some statistics of this abstraction. In addition to the trace

information, this table also shows the number of alloca-
tion sites in the sample traces. In a trace, an allocator may
be invoked several times, so there will be more allocation
sites than heap allocator functions shown in Table 4.

On the right side of the table, it shows the number of
heap access operations. Note that, for each heap access
operation, its heap allocation site is unique. So the num-
ber of heap operation pairs equals to the heap access op-
erations.

As shown in the table, there are too many low-level
heap access instructions (i.e., type-D3 access in the ta-
ble). The number of high-level heap access operations is
much smaller. Furthermore, after we consider the taint
attributes, the number of heap access operations drop
quickly. Finally, we sorted the remaining heap access op-
erations according to their type, taint attributes, constraint
complexity etc. as discussed in Section 3.4.2. The num-
ber of heap operation pairs that are likely to be vulnerable
is quite small, comparing to the number of low-level heap
operations.

5.7 Comparison with fuzzers

In order to evaluate the effectiveness of HOTracer, we
performed extra experiments, to compare it with exist-
ing vulnerability discovery solutions, especially fuzzing.
As our prototype worked in Windows 7, we chose two
representative fuzzers on Windows, i.e., WinAFL 3 and
Radamsa #, to test vulnerable softwares with the same
seed inputs.

WinAFL is a fork of AFL on Windows, which relies on
dynamic instrumentation using DynamoRIO [5] to mea-
sure and extract target coverage. Radamsa is a black-box
fuzzer not guided by code coverage. Instead, it aims at
testing execution path thoroughly, similar to our solution.

Due to the time limitation, we tested all these solutions
on one application potplayer, with same seed inputs,
for one day. WinAFL found no crashes during this time
period, while Radamsa found 1144 crashes related to heap
overflows.

With a further analysis, we figured out there are only 11
crash points, and 3 vulnerability points. HOTracer found
all these 3 vulnerabilities, and 4 more heap overflows.

It is worth noting that, fuzzers and HOTracer both have
other advantages. For example, general-purpose fuzzers
could find other types of vulnerabilities, not only heap
overflows. Our solution HOTracer could be used to triage
the root cause of crashes, and help debugging and fixing
bugs which are time-consuming and important to vendors.

5.8 Case studies

In this section, we will study some vulnerabilities in de-
tails and show some findings during the analysis.

3https://github.com/ivanfratric/winafl
“https://github.com/aoh/radamsa

Table 4: Accuracy of the heap allocation recognition, including the statistics of the trace and the time of the heap
allocation identifications. Type-A allocators are ones that satisfy the heuristics A in Section 3.3.1, i.e., functions return
heap poitners. Type-A-B allocators are ones that satisfy both heuristics A and one of B1/B2/B3/B4. Similarly, type-
A-B-C allocators satisfy one of C1/C2/C3/C4 in addition to previous heuristics. Confirmed allocators are ones that
we manually validated to be real allocators, either from the symbol information of those functions, or from manual

reverse engineering.

Trace Info Heap Allocations

Application | Record | Snapshot | Record | Replay | Trace Identif. | type-A type-A-B | type-A-B-C | confirmed

Time Size Size Time Size Time allocators | allocators | allocators allocators
demo 60s 632.5M 4.5M 444s 6.1M Is 1 1 1 1
XnView 29s 430.6M 36.6M 486s 2.8G 125s 30 7 5 3
ZipltFast 83s 819.3M 13.6M 1257s 31.9G || 4044s 28 9 3 3
MS Word 178s 539.8M 120.7M | 3712s 35.9G || 305s 43 11 5 4
Potplayer 131s 523.4M 40.6M 1676s 50.8G || 714s 33 9 2 2
QQPlayer 150s 667.1M 138.2M | 3320s 47.0G || 630s 39 12 3 3
MPlayer 183s 519.7M 38.2M 1561s 16.6G || 518s 22 4 2 2

Table 5: Abstraction of heap access operations. Type-D3 access operations are all low-level heap access instructions, as
discussed in Section 3.4.1. Type-D2 access operations are REP-prefixed instructions or a short sequence of continuous
heap access instructions. Type-D1 access operations are loops performing a single heap access.

Trace Info Alloc. Sites Heap Access

Application | Trace Analysis || Alloc. | Tainted || type-D3 type-D2 | type-D2 type-D1 Tainted | Sorted

Size Time Sites Alloc. Access REP seq Access Access | Pair
MS Word 35.9G 1097s 2,643 20 20,244,088 81,349 1,114,499 619,380 3,450 125
MS Word 535.6G | 16210s 3,886 33 267,831,917 | 710,569 | 12,751,174 | 10,314,164 | 29,718 | 1,258
Potplayer 21.9G 1231s 23,099 | 4,695 6,832,296 38,802 1,198,956 239,809 19,933 | 322
Potplayer 32.5G 695s 16,127 | 105 2,249,059 20,145 354,476 203,445 674 201
Potplayer 50.8G 2768s 18,773 | 154 2,061,109 14,435 405,334 130,501 1,078 254
Potplayer 63.9G 1267s 73,533 | 45 20,282,901 61,412 3,944,539 510,715 1070 109
Potplayer 106.1G | 4312s 47,118 | 4,820 4,080,172 137,771 | 5,927,258 1,454,529 27,466 | 630
QQPlayer 47.0G 2673s 28,749 | 10 6,488,402 141,384 | 1,375,956 910,115 12 10

5.8.1 Tainted Access Offset

As discussed in the background, we merged the access
offset with the access size. In other words, the value of
access offset is included in the access size. And whenever
the access offset is tainted, we mark the access size as
tainted. In the experiment, we found a new vulnerability
in Feiq due to a tainted heap access offset.

5.8.2 Implicit Taint

Sometimes, the input does not directly affect the alloca-
tion size or access size. Instead, the sizes are control-
dependent on the inputs.

A common case is that, developers use strlen or cus-
tom loops to identify the length of an input string, and al-
locate buffers. The program will compare the input bytes
against the special character ?\0’, and increase the allo-
cation size accordingly.

Another example is that, the vulnerability CVE-2014-
1761 in Microsoft Word uses an access size that is con-
trolled by the number of 1folevel fields in the input.
The program will compare the input against 1folevel,

and set the access size accordingly.

Traditional taint analysis will not cover this type of im-
plicit data flow. However, HOTracer could detect them by
performing a backward data flow analysis on the access
size and allocation size. If we found the access size or al-
location size is control-dependent on the inputs, then we
could report a candidate vulnerability.

5.8.3 Mismatch Taint

Heap overflow vulnerabilities may exist if either the allo-
cation size or the access size is tainted. For developers,
it is easier to realize the existence of heap overflow and
deploy sanity checks when only allocation size or access
size is tainted. However, it gets challenging when both
the allocation size and access size are tainted.

The allocation size and access size may be related to
different input bytes. In this case, it is prone to heap over-
flow. For example, the access size in vulnerability CVE-
2014-1761 is related to 1folevel, but its allocation size
is related to another field 1istoverridecount.

A more common case is that, the access size and allo-
cation size are relevant to the same input bytes, but they

mismatch due to several causes.

First, the allocation size may get smaller than expected
if there are integer overflows, e.g., two new vulnerabil-
ities we found in QQPlayer and PotPlayer. Second, the
access site may be so far from the allocation site that de-
velopers forget or fail to sanitize the inputs properly, e.g.,
the vulnerability CVE-2011-5233 in InfraView. Finally,
the access size and allocation size may change due to dy-
namic features of programming languages. For example,
in the vulnerability CVE-2015-0327 in Adobe Flash, the
allocation and access size are both relevant to the API
nextNameIndex. However, this API could be overridden
by users, to cause mismatches and trigger heap overflow.

5.8.4 Multiple Vulnerabilities in One Trace

In some cases, there may be multiple potential heap vul-
nerabilities in a program path. For example, when analyz-
ing the trace generated for the known vulnerability CVE-
2014-1761 in Microsoft Word, we found several potential
vulnerable points, and confirmed two of them are vulnera-
ble. We also confirmed that these two new bugs still exist
in the latest Microsoft Word (i.e., Office 2016). It shows
that HOTracer could find out all potential heap vulnera-
bilities in one path, while existing solutions only focus on
the first vulnerability.

5.8.5 Long Testing Time

Sometimes, the bugs will only be triggered after the pro-
gram has run for a while. For example, a new we found in
VLC could only be triggered after we play a video file for
several minutes. Existing solutions like AFL could hardly
find this type of vulnerabilities, because the throughput is
extremely low. HOTracer is better at handling this kind
of issues. It first filters seed inputs that could lead to dif-
ferent paths, and then analyzes each path once, no matter
how long that path takes.

6 Related Work

6.1 Heap Overflow Detection
6.1.1 Static Analysis

Static analysis could be used to analyze programs with-
out executing them. For example, Allamigeon et al. uti-
lizes abstract intepretation to ensure the absence of heap
overflow [2]. Chen et al. proposes a solution based on
FSM (finite state machine) to report potential heap over-
flows [11]. SIFT is a static analysis system to generate
input filters that nullify integer overflow errors associated
with critical program sites such as memory allocation or
block copy sites [27].

However, static analysis usually requires access to
source code. And it is challenging to predict the spatial at-
tributes of heap objects with static analysis, and thus hard

to find heap overflows with static analysis. They will usu-
ally introduce a high false positives and false negatives.
Moreover, static analysis solutions in general require a
precise reachability and alias analysis, limiting their scope
of use.

6.1.2 Online Dynamic Analysis

Dynamic analysis is more efficient to detect heap vulner-
abilities, since it could get a precise spatial attributes and
point-to relationship at runtime. There are also two types
of dynamic analysis solutions: online analysis and offline
analysis. Online dynamic analysis solutions usually first
instrument target applications with metadata before ex-
ecution, and then track the metadata and check security
violations during the execution.

Online detection: AddressSanitizer [40] is one of the
most effective solutions to detect heap (and other) vul-
nerabilities at runtime. It instruments redzones to each
heap object when the object is allocated, and marks red-
zones’ bytes as unaddressable while objects’ bytes are ad-
dressable. A heap overflow (or underflow) vulnerability is
reported if an unaddressable byte is accessed. This so-
lution introduces a high runtime performance overhead
(e.g., 73%), and is not suitable for production use. More-
over, it could only detect vulnerabilities when the given or
generated input testcases could trigger security violations.

SoftBound [30] tracks the size and base of every
pointer, and checks each pointer dereference operation.
BaggyBounds [1] uses a compact table to store ob-
ject sizes, adopts a fast algorithm to get object sizes
and base addresses from only pointers, and checks each
pointer arithmetic operation. Duck et al. tries to protect
heap bounds with low fat points [20]. Diehard [4] and
Dieharder [34] randomly allocate memory larger than re-
quired, and thus mitigate heap overflow vulnerabilities.

Online detection solutions rely on inputs to trigger vul-
nerabilities and help finding vulnerabilities in a passive
way. Also they have reasonable high performance over-
heads.

Fuzzing: Fuzzing is another type of state-of-art solu-
tions to detect vulnerabilities. Among them, AFL [51]
is one of the most popular fuzzers. TaintScope [49]
is a checksum-aware fuzzing tool which can identify
checksum-based checks and bypass such checks. SYM-
FUZZ [10] combines both black- and white-box tech-
niques to maximize the effectiveness of fuzzing. Zhigiang
et al. utilizes the results of static analysis, and filter
out sensitive input bytes using data lineage analysis [25].
Based on the analysis results, the fuzzer could only mu-
tate target bytes to increase the efficiency. Driller [44] and
VUzzer [38] are the most recent works on fuzzing. Driller
enables AFL to explore new paths in an alternative way
of fuzzing and concolic execution. And VUzzer enhances
the efficiency of general-purpose fuzzers with a smart mu-

tation feedback loop based on applications’ control- and
data-flow features.

Like other online detection solutions, fuzzers also rely
on input testcases to trigger vulnerabilities at runtime.
Moreover, they simply rely on program crashes to de-
tect vulnerabilities, due to the lack of runtime metadata
support. So they may not find vulnerabilities with strict
conditions even if they have reached a very high code
coverage. As they are general fuzzings tools and provide
few supports for triaging crashes, it requires many man-
ual efforts when further identifying root causes of found
crashes.

Symbolic execution: Symbolic execution is a well-
known technique used to reason applications. By mark-
ing inputs as symbolic values and propagateing them to
variables, it could be used to analyze all possible states
of one program path with only one-time analysis. Fea-
turing with path exploration and vulnerability condition
modeling, symbolic execution could be used to discover
vulnerabilities. Although they are successful in many
cases [7, 9, 14, 37], symbolic execution is rarely adopted
in practice due to the limitations of complex constraint
solving and path explosion. Traditional symbolic execu-
tion solutions mainly focus on how to explore new pro-
gram paths and reduce the complexity of constraints.

Concolic execution [22, 29] is an alternative way for
full symbolic execution. With concrete values, the analy-
sis engine could explore deeper and be more scalable. Our
solution adopts the similar offline trace-based constaint
generation. However, we concentrate only on heap over-
flow vulnerabilities, and thus apply some optimizations
to the symbolic execution and constraint solving process.
As symbolic execution on real world applications is an
open challenge, our solution does not improve it much,
but roughly use it as a tool to reason about the constraints
that we built with delicate data flow analysis.

6.1.3 Offline Dynamic Analysis

Offline dynamic analysis solutions usually analyze the
runtime execution’s results offline, and do not interfere
the runtime execution except for recording. Comparing
to online dynamic analysis, this type of solutions could
perform in-depth analysis for a single dynamic execution,
and explore potential vulnerabilities.

DIODE [41] targets heap allocation sites in a trace, and
extracts and solves integer overflow conditions for allo-
cation sizes to discover potential I0O2BO (a special kind
of heap overflow) vulnerabilities. It only considers heap
allocation operations, but not heap access operations, and
thus will miss many heap vulnerabilities. Moreover, it
only considers integer overflow conditions, which is only
a subset of heap overflow conditions.

Dowser [23] is an offline solution to detect buffer over-
flow (including heap overflow). It relies on compile-time

information to filter pointer accesses in loops that are
more likely to be vulnerable to buffer overflow (includ-
ing heap overflow). It then uses dynamic taint analysis
to infer which input bytes will affect these operations,
and steers symbolic execution engine to explore the value
space of the relevant input bytes. However, it does not
support binary programs, and does not support precise
heap layout analysis and thus are not efficient to find heap
overflows. Moreover, it only considers heap access oper-
ations, but not heap allocation operations, and thus could
not find all heap vulnerabilities. BORG [31] is the binary
version of Dowser, facing a same set of limitations.

6.2 Related Program Analysis Techniques

MemBrush [13] proposes several heuristics to identify
custom memory allocators. The key observation is that
a malloc-like routine will return a heap address, and its
client will use this return value to access memory. It uses
dynamic testing to repeatedly validate candidate functions
against the expected behaviour, to filter out real allocators.
This solution could identify custom heap allocators more
accurately. However, it could not be integrated into our
offline analysis solution. We leave it as a future work.

Aligot [8] proposes a solution to identify loops in exe-
cution traces, and uses it to identify cryptographic func-
tions in obfuscated binary programs. A recent paper [50]
improves Aligot in identifying loop bodies. Jordi Tubella
et.al. also proposed a solution [45] to identify loops dy-
namically. These solutions could handle more compli-
cated loops than our solution. But they are over-qualified
for our target, i.e., identifying loops used for heap access
operations.

Recognizing structures in binary is also helpful for our
work. HOTracer can benefit from related works [26, 42,
48] to identify elements inside objects. These could make
HOTracer able to detect and discover sub-object overflow
vulnerabilities.

7 Discussion

It is challenging to recognize all custom heap manage-
ment functions, especially when analyzing the trace di-
rectly. Although the heuristics-based solution we took is
not perfect, it indeed helps us find more heap vulnerabili-
ties than state-of-art solutions. But our solution could def-
initely benefit from an improved recognition algorithm.

It is also challenging to abstract all heap access oper-
ations. Complicated access operations could be missed,
and the access size and other attributes of these operations
are hard to retrieve, making our prototype miss potential
vulnerabilities. Related work (e.g., CryptoHunt [50]) on
program semantics comprehension could help HOTracer,
e.g., to handle more complex loops.

Some heap vulnerabilities may not crash target pro-
grams even if they are triggered. Our solution could find

out this type of vulnerabilities. However, they could still
be exploited in some cases. It would be interesting to as-
sess whether these vulnerabilities are exploitable. It is one
of our ongoing research to automatically analyze them.

Moreover, it is an open challenge to solve constraints.
Vulnerability conditions and path constraints generated
by HOTracer may be too complex to solve. In that
case, we make efforts to make it practical and may still
miss some potential heap vulnerabilities. Also there
are some more complex situations (e.g., checksum men-
tioned in TaintScope [49], blocking checks mentioned in
DIODE [41]) making it harder. In the evaluation we per-
formed, we did not have this type of problems. But in
general, it needs to be addressed. We could utilize the
vulnerability conditions and candidate pairs of heap allo-
cation and heap access operations, to perform other types
of analysis, e.g., fuzzing, or change the path carefully by
flipping like DIODE.

8 Conclusion

Heap overflows account for a big portion of real world
memory corruption based exploits. We pointed out the
root causes of heap vulnerabilities, and proposed a new
offline dynamic analysis solution to discover heap vulner-
abilities in program execution traces. It is able to explore
each program path in depth to find vulnerabilities that are
hard to detect and prone to miss by existing solutions. We
also proposed several optimizations, making our solution
more practical. Our prototype tool HOTracer found 47
new vulnerabilities in 17 real world applications, show-
ing that this solution is effective.

Acknowledgement

We would like to thank our shepherd Stelios Sidiroglou-
Douskos, and the anonymous reviewers for their insight-
ful comments. This research was supported in part by
the National Natural Science Foundation of China (Grant
No. 61572483, 61402125 and 61502469), and Young
Elite Scientists Sponsorship Program by CAST (Grant
No. 2016QNRC001).

References

[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
Baggy bounds checking: An efficient and backwards-compatible
defense against out-of-bounds errors. In Usenix Security Sympo-
sium, 2009.

[2] Xavier Allamigeon and Charles Hymans. Static analysis by ab-
stract interpretation: application to the detection of heap over-
flows. Journal in Computer Virology, 4(1):5-23, 2008.

[3] Arash Baratloo, Navjot Singh, and Timothy Tsai. Libsafe: Protect-
ing critical elements of stacks. White Paper http://www. research.
avayalabs. com/project/libsafe, 1999.

[4] Emery D Berger and Benjamin G Zorn. Diehard: probabilistic
memory safety for unsafe languages. In ACM SIGPLAN Notices,
volume 41, pages 158-168, 2006.

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Derek L. Bruening. Efficient, transparent and comprehensive run-
time code manipulation. Technical report, 2004.

Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio
Nappa. Undangle: early detection of dangling pointers in use-
after-free and double-free vulnerabilities. In ISSTA, 2012.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’08,
2008.

Joan Calvet, José M Fernandez, and Jean-Yves Marion. Aligot:
cryptographic function identification in obfuscated binary pro-
grams. In CCS, 2012.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. In IEEE Sympo-
sium on Security and Privacy, 2012.

Sang Kil Cha, Maverick Woo, and David Brumley. Program-
adaptive mutational fuzzing. In IEEE Symposium on Security and
Privacy, 2015.

Shuo Chen, Jun Xu, Zbigniew Kalbarczyk, and K Iyer. Secu-
rity vulnerabilities: From analysis to detection and masking tech-
niques. Proceedings of the IEEE, 94(2):407-418, 2006.

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and
Cristiano Giuffrida. StackArmor: Comprehensive Protection From
Stack-based Memory Error Vulnerabilities for Binaries. In NDSS,
2015.

Xi Chen, Asia Slowinska, and Herbert Bos. Who allocated my
memory? detecting custom memory allocators in ¢ binaries. In
WCRE, pages 22-31. IEEE, 2013.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2e: A platform for in-vivo multi-path analysis of software sys-
tems. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, 2011.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and
Heather Hinton. Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Usenix Security Sympo-
sium, 1998.

Mark Daniel, Jake Honoroff, and Charlie Miller. Engineering heap
overflow exploits with javascript. WOOT, 8:1-6, 2008.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt
solver. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 337-340. Springer, 2008.

Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee.
Tappan zee (north) bridge: mining memory accesses for introspec-
tion. In CCS, 2013.

Gregory J. Duck and Lorenzo Yap, Cavallaro. Stack Bounds Pro-
tection with Low Fat Pointers. In NDSS, 2017.

Gregory J Duck and Roland HC Yap. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Confer-
ence on Compiler Construction, pages 132—142. ACM, 2016.

Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Statically
detecting use after free on binary code. Journal of Computer Vi-
rology and Hacking Techniques, 10(3):211-217, 2014.

Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage:
Whitebox fuzzing for security testing. Queue, 10(1):20:20-20:27,
January 2012.

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and
Herbert Bos. Dowsing for overflows: A guided fuzzer to find
buffer boundary violations. In Usenix Security Symposium, 2013.
Etoh Hiroaki and Yoda Kunikazu. ProPolice: Improved stack-
smashing attack detection. /PSJ SIG Notes, pages 181-188, 2001.

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. Convicting ex-
ploitable software vulnerabilities: An efficient input provenance
based approach. In 2008 IEEE International Conference on De-
pendable Systems and Networks With FTCS and DCC (DSN),
2008.

Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic re-
verse engineering of data structures from binary execution. In
NDSS, 2010.

Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Mar-
tin Rinard. Sound input filter generation for integer overflow er-
rors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL * 14, pages
439-452, New York, NY, USA, 2014. ACM.

Microsoft. ~ Software vulnerability exploitation trends: Ex-
ploring the impact of software mitigations on patterns of
vulnerability exploitation (2013). http : / / download .
microsoft . com/ download /F /D /F /FDFBE532 - 91F2 -
4216-9916 - 2620967CEAF4 / Software,20Vulnerability’,
20Exploitation’%20Trends.pdf.

David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs. In
Proceedings of the 18th Conference on USENIX Security Sympo-
sium, SSYM’09, 2009.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In PLDI, 2009.

Matthias Neugschwandtner, Paolo Milani Comparetti, Istvan
Haller, and Herbert Bos. The borg: Nanoprobing binaries for
buffer overreads. In Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, CODASPY 15, 2015.
Meining Nie, Purui Su, Qi Li, Zhi Wang, Lingyun Ying, Jinlong
Hu, and Dengguo Feng. Xede: Practical Exploit Early Detection.
In RAID, 2015.

Nick Nikiforakis, Frank Piessens, and Wouter Joosen. Heapsen-
try: Kernel-assisted protection against heap overflows. In DIMVA,
2013.

Gene Novark and Emery D Berger. Dieharder: securing the heap.
In CCS, pages 573-584. ACM, 2010.

PaX-Team. PaX ASLR (Address Space Layout Randomization).
http://pax.grsecurity.net/docs/aslr.txt, 2003.
Hendrik Post and Wolfgang Kiichlin. Integrated static analysis for
linux device driver verification. In Integrated Formal Methods,
pages 518-537. Springer, 2007.

David A. Ramos and Dawson Engler. Under-constrained symbolic
execution: Correctness checking for real code. In Usenix Security
Symposium, 2015.

Sanjay Rawat, Vivek Jain, Ashish Kumar, and Herbert Bos.
VUzzer: Application-aware Evolutionary Fuzzing. In NDSS,
2017.

Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symposium on Security and Privacy, 2010.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitriy Vyukov. Addresssanitizer: A fast address sanity
checker. In the 2012 USENIX Annual Technical Conference, pages
309-318, 2012.

Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rittenhouse,
Paolo Piselli, Fan Long, Deokhwan Kim, and Martin Rinard. Tar-
geted automatic integer overflow discovery using goal-directed
conditional branch enforcement. In ASPLOS, 2015.

Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard:

A dynamic excavator for reverse engineering data structures. In
NDSS, 2011.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

Alexander Sotirov. Heap feng shui in javascript. Black Hat Europe,
2007.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In NDSS, 2016.

J. Tubella and A. Gonzalez. Control speculation in multithreaded
processors through dynamic loop detection. In High-Performance
Computer Architecture, 1998. Proceedings., 1998 Fourth Interna-
tional Symposium on, 1998.

Arjan van de Ven and Ingo Molnar. Exec Shield. https:
//www.redhat.com/f/pdf/rhel/WHPOO0O6US _Execshield.
pdf, 2004.

Vendicator. A "stack smashing" technique protection tool for
Linux. http://www.angelfire.com/sk/stackshield/,
2000.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and
Giovanni Vigna. Ramblr: Making Reassembly Great Again. In
NDSS, 2017.

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vul-
nerability detection. In IEEE Symposium on Security and Privacy,
2010.

Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic
Function Detection in Obfuscated Binaries via Bit-precise Sym-
bolic Loop Mapping. In IEEE Symposium on Security and Pri-
vacy, 2017.

Michal Zalewski. American fuzzy lop.

Qiang Zeng, Mingyi Zhao, and Peng Liu. Heaptherapy: An effi-
cient end-to-end solution against heap buffer overflows. In 2015
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 485-496. IEEE, 2015.

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. Int-
patch: Automatically fix integer-overflow-to-buffer-overflow vul-
nerability at compile-time. In Computer Security-ESORICS 2010,
pages 71-86. 2010.

http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://pax.grsecurity.net/docs/aslr.txt
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://www.angelfire.com/sk/stackshield/

	Introduction
	Background
	Running Example
	Root Cause Analysis
	Observation

	Design
	System Overview
	Trace Generation Optimization
	Testcase Selection
	Trace Record and Replay

	Heap Operation Model
	Heap Allocation Recognition
	Heap Operation Pairs

	Candidate Pair Reduction
	Heap Access Abstraction
	Heap Operation Pairs Sorting

	Constraint Solving Optimization

	Implementation
	Collect Traces
	Testcase Selection
	Trace Generation

	Identify Heap Operations
	Heap Allocation Recognition
	High Level Heap Access

	Track Spatial Attribute
	Build Heap Layout
	Pair Heap Operations

	Track Taint Attribute
	Build Vulnerability Condition
	Prove Heap Vulnerabilities
	Build Path Constraints
	Constraint Simplification
	Mutate and Verify

	Evaluation
	Effectiveness
	False Negatives and False Positives
	Bug Reports
	Efficiency
	Testcases Selection
	Details of Trace Analysis
	Comparison with fuzzers
	Case studies
	Tainted Access Offset
	Implicit Taint
	Mismatch Taint
	Multiple Vulnerabilities in One Trace
	Long Testing Time

	Related Work
	Heap Overflow Detection
	Static Analysis
	Online Dynamic Analysis
	Offline Dynamic Analysis

	Related Program Analysis Techniques

	Discussion
	Conclusion

