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ABSTRACT

The number of vulnerabilities increases rapidly in recent years,

due to advances in vulnerability discovery solutions. It enables a

thorough analysis on the vulnerability distribution and provides

support for correlation analysis and prediction of vulnerabilities.

Previous research either focuses on analyzing bugs rather than

vulnerabilities, or only studies general vulnerability distribution

among projects rather than the distribution within each project.

In this paper, we collected a large vulnerability dataset, consist-

ing of all known vulnerabilities associated with five representative

open source projects, by utilizing automated crawlers and spending

months of manual efforts. We then analyzed the vulnerability dis-

tribution within each project over four dimensions, including files,

functions, vulnerability types and responsible developers. Based

on the results analysis, we presented 12 practical insights on the

distribution of vulnerabilities. Finally, we applied such insights on

several vulnerability discovery solutions (including static analysis

and dynamic fuzzing), and helped them find 10 zero-day vulnera-

bilities in target projects, showing that our insights are useful.
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1 INTRODUCTION

Software vulnerability is one of the major threats to cyber se-

curity. For example, vulnerabilities like HeartBleed [57], Sand-

Worm [58] and DirtyCow [56] have posed great risks on millions

of users. Due to recent advances of modern vulnerability hunters

(e.g. AFL [8], AFLGo [12], Steelix [33], CollAFL [19]), vulner-

abilities are being reported at a striking speed. The number of

exposed vulnerabilities recorded by National Vulnerability Data-

base (NVD) [40] already exceeds forty thousands, let alone the

vulnerabilities which remain unknown to the public. This large vol-

ume enables a thorough analysis of vulnerability distribution, and

provides support for correlation analysis of vulnerabilities, which

in turn helps finding new vulnerabilities.

For instance, as shown in Figure 1, we found 5 new vulnerabili-

ties (marked as NVx) when studying some existing vulnerabilities

(marked as MSxx) in Microsoft Windows Journal. We figure out

that, all these new vulnerabilities are close to existing vulnerabili-

ties (marked as MSxx) in the call graph. Some of them even reside

in the same functions as existing vulnerabilities, or have similar

code snippets. It therefore implies that, vulnerabilities in a project

could have locality in space (e.g., function locations) and patterns

(e.g., code structures), and such locality could be utilized to locate

new vulnerabilities around known vulnerabilities in the project.

Motivated by this example, we intend to analyze the vulnerability
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Figure 1: A real-world example: vulnerabilities have a strong

correlation which could help finding new vulnerabilities.

distribution within projects, in order to investigate if such vulner-

ability locality is common in individual projects. If so, we further

intend to investigate whether such locality could be utilized to find

new vulnerabilities around known vulnerabilities.

Prior works [10, 14, 17, 24, 25, 52] have studied a large number

of bugs and provided insights for better understanding the distri-

bution and root causes of bugs. These insights are further utilized

to detect more related bugs [9, 53, 54]. However, these approaches

and insights of bugs cannot be well shifted to vulnerabilities, since

vulnerabilities exhibit many different characteristics from bugs. For

instance, vulnerabilities are much more rare than bugs. Another

line of works [15, 29, 39, 51] concentrate on utilizing individual

features of vulnerabilities, e.g., function calls and code complexity,

to predict new vulnerabilities. Some other works [18, 26, 41, 47, 62]

focus on studying the life-cycle of vulnerabilities and how to fix

them. The work [32] studied the vulnerability distribution across

projects. However, existing works did not study the vulnerabil-

ity distribution within projects, and thus are not able to analyze

vulnerability locality in individual projects.

To study vulnerability distribution within projects, there are

several challenges to address. First, there are no qualified datasets

available for a large scale analysis. Existing vulnerability datasets

focus on covering diversified projects, but not all vulnerabilities

for a given set of projects. Second, a large scale data analysis is

time-consuming and in general challenging.

In this work, we make a first attempt to study the distribution

of and correlation between vulnerabilities within projects on a

large scale. We select 5 typical open-source projects Linux-kernel,
FFmpeg, ImageMagick, OpenSSL and php-src as the analysis

objects. For each project, we collected all its associated vulnerabili-

ties by aggregating multiple data sources, including NVD entries,

BugZilla reports, security bulletins and GitHub commits. We then

attempt to answer the following questions:

RQ1: Vulnerability Distribution. How are vulnerabilities dis-

tributed? Can it be used for hunting new vulnerabilities?

RQ2: Vulnerability Dependency. Why are vulnerabilities often-

times found within a short code range? Is there any depen-

dency between vulnerabilities?

RQ3: Vulnerability Recurrence.Why do vulnerabilities repeat-

edly occur in the same function? Is it a general case?

To this end, we analyze the collected vulnerability dataset as

follows. We first associate each vulnerability with its responsible

code commits, then localize the vulnerable code snippets related to

each vulnerability, and then build the call-graph for the vulnerable

code snippets. Further, based on the extracted information, we ana-

lyze the vulnerability distribution over space, type, and responsible

developers, as well as the dependency between vulnerabilities in

the call graph and the vulnerability recurrence phenomena.

We find that, the vulnerability distribution follows the Pareto

law [45] on the dimension of space (file, not function), type and

responsible developers. Moreover, most (more than 60%) vulnerable

functions have at least one vulnerable neighbor function located

in a 2-jump range in the call-graph. In other words, most vulnera-

ble functions do not exist alone. We also find that, incomplete or

wrong patches for vulnerabilities are the most common reasons

for the existence of high-frequency vulnerable functions, whereas

the patching workflow ROPO (Report One issue and Patch One

position based on the reference PoC) is another important reason.

In summary, we make the following contributions.

• Large-scale vulnerability dataset. Aiming at studying the vulner-

ability distribution within projects, we spent 5 person months

efforts to build a largest-to-date vulnerability dataset regarding a

set of open source projects. We share this dataset to the public 1,

to facilitate other researches.

• Thorough empirical study. Different from the prior work, our

study unveils the characteristics of vulnerability distribution

over several dimensions including file, function, type and respon-

sible developers. Moreover, we also investigate the correlation of

vulnerabilities so as to uncover the causes of their presence.

• Practical insights. We present several practical insights based on

the analysis results. In particular, we find that most vulnerabili-

ties do not exist alone. We also find that, imperfect vulnerability

patches and the patching workflow ROPO are general phenom-

ena, causing vulnerabilities repeatedly occur in some functions.

We also propose a solution to mitigate the ROPO issue.

• New discoveries. Based on the concluded insights, we propose a

solution to use them to guide vulnerability discovery, and have ap-

plied them to several vulnerability discovery solutions including

static analysis and dynamic fuzzing, and help them successfully

find 10 zero-day vulnerabilities in target projects.

2 APPROACH

Figure 2 presents the overview of the approach we used in this

empirical study. First, we select several popular open source projects

that represent varying functionalities. Then, we aggregate multiple

vulnerability data sources, including NVD/CVE and BugZilla, to

collect all description information of vulnerabilities associated with

target projects. We also crawl all code commits of target projects

from GitHub, to support detailed vulnerability analysis.

Further, we analyze the relationship between NVD/CVE vulnera-

bility entries and GitHub commits, to recognize the commits related

to each vulnerability. Then, we localize the vulnerable code snippets

and construct their call graphs. At last, we perform multiple analy-

ses on these vulnerabilities and concludemany take-homemessages

for future research. Moreover, we develop proof of concepts based

on these findings to evaluate their practicality.

2.1 Target Selection

We select 5 popular open-source projects, written in C/C++

language, as our analysis object: FFmpeg [2], ImageMagick [3],

OpenSSL [6], PHP-SRC [7] and Linux kernel [5]. On one hand, these

1https://github.com/twelveand0/CarrotsBlender
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Figure 2: The overview of the empirical study

Table 1: Statistics of our dataset, including the number of

stars, forks and commits of each project obtained from

GitHub, and the number of associated CVE entries in NVD,

as well as the number of vulnerabilities in our dataset, in-

cluding those with CVE IDs and without CVE IDs.

# Vulnerabilities in our dataset
Project # Stars/Forks # Commits # CVE

with CVE w/o CVE total

FFmpeg 16,266/5,911 93,265 289 256 652 908
ImageMagick 3,083/543 15,202 458 280 476 756
OpenSSL 11,099/4,807 23,444 192 130 2 132
PHP-SRC 24,471/5,622 111,821 576 346 80 426
Linux 79,149/27,578 841,891 2291 1716 0 1,716

Total 1,085,623 3,806 2,476 1,462 3,938

projects span a wide range of functionalities. FFmpeg is a multi-

media framework, ImageMagick is a representative raster/vector

image file processing software suite, OpenSSL is an implementa-

tion of secure communication protocols, PHP-SRC is the official

interpreter for PHP language, and Linux kernel is one operating

system. The diversity intuitively involves developers of different

fields and varying programming styles. Therefore, more types of

vulnerabilities can be covered. On the other hand, every project has

at least hundreds of CVE entries in NVD [40], as shown in Table 1.

Notorious vulnerabilities like ImageTragick [4], DirtyCow [56]

and HeartBleed [57] are all discovered in these projects.

2.2 Data Collection

To obtain sufficient and comprehensive information for vulner-

abilities, we collect code commits from Github and vulnerability

entires from NVD/CVE for each project.

Code commits. We scrape all commits from the selected Github

projects with an implemented web crawler in 8,000+ LOC of Python.

The crawler leverages GitHub developer APIs [20] and downloads

changed code, issues, pull requests, and responsible developers for

each commit. To reduce the data volume, we set up a crawl rule that

filters out the commits without making any semantic-aware change.

More specifically, the changes to configuration files, code comments

and spacing are not substantially related to vulnerabilities, and

thereby not embodied in our dataset. After applying this rule, we

get a total of 1,085,623 commits as shown in Table 1.

Vulnerability entries. It is not always about security when a

developer makes a commit to the project. Functionality update,

performance optimization, and software refactoring are all possible

reasons. As such, we have to first identify vulnerability-related

commits before the evaluation. To this end, we resort to NVD [40]

and CVE [34] which maintain a large corpus of vulnerabilities,

and recognize the real vulnerability-related commits. Not all CVE

entries are useful in this task, so we restrict the entries by specifying

the vendors and products. For example, FFmpeg vulnerabilities can

be distilled by searching the entries with the product “FFmpeg” and

vendor “FFmpeg”. In this way, 3,806 CVE entries are obtained.

2.3 Human-involved Analysis

There are several tasks requiring professionals’ involvement as

indicated in Figure 2. In this study, we recruited 3 security experts,

all of whom have more than 5-year experience in vulnerability re-

search. In total, they have found dozens of unknown vulnerabilities

in both close/open-source software, and more than 30 vulnerabil-

ities have been assigned with CVE identifiers. One of them was

even listed in the 2016 MSRC Top 100 Security Researchers.

Cooperation. To ensure the correctness of the manual analysis

results, we employ a customized peer review process. At first, each

task is analyzed by two experts. The task finished if they could reach

an agreement. Otherwise, the third expert is involved to resolve

the divergence. If she/he agrees with either one of the previous two

experts, then we follow the simple majority rule to yield the final

analysis result. In the worst case, three experts report three different

results, then we follow a conservative principle to resolve the issue.

More specifically, three experts will discuss together and yield a

conservative result. Take the CWE labelling task as an example,

given a CVE vulnerability, if three experts report three different

CWE labels, then a generalized CWE label which covers them or

an ’UNKNOWN’ label will be yielded as the final result.

2.4 Data Processing

As Figure 2 shows, we process the collected data in three steps:

association analysis, vulnerability localization and VCG (Vulnerabil-

ity Call Graph) construction. They are detailed as follows.
2.4.1 Association Analysis. We first try to associate CVE entries

with responsible commits. If one commit is found contributing to

a CVE entry, we regard it as a vulnerability-related commit. Note

that, CVE entries in the NVD/CVE database often have references

to external links, including links of responsible commits in the
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(a) Files. (b) Functions.

Figure 3: Alberg diagrams showing the percentage of vulner-

abilities over the percentage of vulnerable files/functions

for each project. Thex axis depicts the percentages of vulner-
able files/functions sorted by the number of vulnerabilities

contained in descending order. The y axis is the cumulative

percentages of vulnerabilities in these files/functions.

vulnerable project’s GitHub repository. With this guidance, we im-

plement a tool to parse these references and extract related GitHub

commit links, and automatically build the connections to commits

for most CVE entries. For the remaining CVE entries, we spend

three person months to manually investigate their corresponding

commits, by reviewing the detailed vulnerability descriptions from

multiple sources, including reports from Google OSS-Fuzz, RedHat

BugZilla and a wide range of security analysis blogs.

Data quality. To make the vulnerability dataset error-free and

precise, we exert the following efforts: 1) Redundancy removal. If

one vulnerability is associated with multiple commits, we check

whether the commits are of the same content but appear in different

branches. If so, we just retain the newest commit. 2) Type correction.

Each vulnerability in the dataset is classified into a CWE category.

However, existing classification results are oftentimes wrong or

imprecise (cf. Section 3.2). We therefore manually correct the cate-

gory of each vulnerability, following the CWE-1000 classification

criteria. Take vulnerability CVE-2016-2549 in project Linux-kernel

as an example, it is labeled with CWE-20 (Improper Input Valida-

tion) and associated with the commit 2ba1fe7 in NVD. However,

after reviewing the CVE description, RedHat BugZilla comments,

messages of the responsible commit and the corresponding patch,

we determined that it is actually a deadlock problem, and reach a

consensus of labeling it as CWE-833 (Deadlock).

As depicted in Table 1, there are in total 3,806 vulnerabilities

recorded in the CVE/NVD database for the selected projects. After

the automated and manual association analysis, 2,476 CVE entries

are successfully associated with their responsible commits. Note

that, during manual analysis, we also find a large number of com-

mits that are created for fixing security bugs not listed in CVE/NVD.

We totally find 1,462 such commits, and associate them with un-

listed vulnerabilities, and put into our dataset as well.

In total, we obtain a cross-verified vulnerability database, includ-

ing 3,938 vulnerability entries. Each entry has been associated with

responsible commits and related metadata information, including lo-

cations, the commit date and responsible developers of vulnerabilities.

2.4.2 Vulnerability Localization. After identifying the vulnerability-

related commits, we seek to localize vulnerable code in a fine-

grained granularity. By virtue of the unified diff format [27], the

changes in commit mainly occur in two programming constructs–

function, and data structure. For a change falling into a function, we

need to recover previous vulnerable code. This is fulfilled with the

built-in command “git reset”, resetting the current HEAD to its

parent commit. Additionally, we handle the following exceptions

during analysis: 1) If a commit does not delete any lines and only

has additions, we first identify the key vulnerability variable(s) influ-

enced by the added code chunk and then determine the locations of

variable definition or reference as vulnerable points. 2) If a commit

adds a new function, this function is not treated as vulnerable.

2.4.3 VCG Construction. We aim to explore whether these vulner-

abilities have semantic relations in between. Here we use vulnera-

bility call graph to represent these relations.

Definition 1. A vulnerability call graph is a tuple (F , V , δ ) such
that F is a non-empty finite set of functions, V is a non-empty finite

sets of vulnerable functions where V ⊆ F , and δ ⊆ F × F is the

function call.

We conduct a lightweight static analysis on top of Doxygen [55]

to construct the call graph of these vulnerable functions. This tool

is context insensitive and cannot handle dynamic dispatch, a trade-

off between computation costs and gains. In the course of graph

construction, we address two challenging problems: same function

declarations in different files by assigning a unique identifier to each

function, and polymorphic functions by taking into account fully

qualified function names. It is worth mentioning that since some

vulnerable functions are removed from the branch over time, they

would not be present in the constructed call graph.

3 RQ1. VULNERABILITY DISTRIBUTION

In this section, we conduct an analysis to reveal the vulnerability

distribution in multiple dimensions, particularly spatial distribution,

type distribution, and developer distribution.

3.1 Spatial Distribution

The study of vulnerability’s spatio-temporal distribution can fa-

cilitate the prediction of where and when vulnerabilities are prone

to occur. In this section, we take into account the collected vulner-

abilities as well as their locations and occurring dates, and tease

apart the characteristics, respectively.

The spatial characteristics are measured in two granularity levels:

file and function.We sort the vulnerable files in terms of the number

of contained vulnerabilities in descending order, and compute the

cumulative probabilities for vulnerabilities as shown in Figure 3a.

For ImageMagick, the top 30% of vulnerable files account for about

80% of vulnerabilities, while for Linux, 60% of vulnerabilities are

discovered in the top 30% of vulnerable files.

This phenomenon raises a question whether it is because the

top 30% of files account for the larger portion of code. Therefore,

to measure the code complexity, we employ four metrics widely

used in fault prediction [16, 50, 61]: non-blank lines of code (LoC),

cyclomatic, maximum level of indentation of blocks within a region

(MaxIndent) and the number of magic numbers. We extract the files
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(a) Files (b) Functions

Figure 4: Alberg diagrams showing the percentage of vulner-

able files (functions) over the percentage of complexity for

the projects. The x axis presents a descendingly sorted list

of vulnerable files as per the number of vulnerabilities con-

tained. The y axis is the cumulative percentage of code com-

plexities based on four metrics.

consisting of vulnerabilities, and compute the four metrics. If one

file has more than one vulnerability, we average the metric values

for this file in terms of the number of vulnerabilities. From Figure 4a

and Figure 3a, the vulnerability number and code complexity have

a linear relation where the vulnerability number is monotonically

increasing along with the increase of code complexity. Based on

the above investigation, we draw the following finding.

Finding 1. A small number (30%) of vulnerable files account for

most (66%) of vulnerabilities. However, these files only contribute

40% of code size and complexities. Therefore, a higher complexity of

code cannot necessarily induce more vulnerabilities, and complexity

metrics in defect prediction cease to being effective for vulnerabilities.

Same with the analysis of vulnerable files, we observe that these

vulnerabilities do not obviously conform to the same phenomenon

with regard to vulnerable functions, that is, top 30% vulnerable

functions only contribute 50% vulnerabilities. Figure 3b shows the

vulnerability number and function number exhibit a linear relation.

In addition, Figure 4a depicts that the complexity for each function

is relatively even with others. As a result, we conclude the spatial

distribution with regard to vulnerable functions as follows.

Finding 2.With the consideration of vulnerable functions, top 30%

vulnerable functions account for 50% vulnerabilities, not as obviously

as vulnerable files do.

3.2 Type Distribution

The type of vulnerabilities is labelled by NVD, following the

CWE [35] classification system. As Section 2, we have scraped all

meta information of vulnerabilities including type. However, by

manually reviewing this information, we find that:

Finding 3. There are 9.6% erroneous, 10.9% imprecise and 7.2% miss-

ing problems in type labelling of our investigated vulnerabilities,

which have been reported to NVD.

The three problems are detailed as follows.

(a) Alberg diagram showing the

cumulative number of vulnera-

bilities over that of types.

(b) The number of vulnerabili-

ties of the top 3 types changes

over time.

Figure 5: Type distribution diagram

(1) Erroneous: Some CVE entires are assigned with wrong CWEs.

For example, by examining the description and code of CVE-

2009-2767 [36], it is sort of CWE-476 (Null Pointer Dereference).

However, it is wrongly classified into CWE-119.

(2) Imprecise: There exist some CVE entries that are assigned

with imprecise CWEs, i.e., CWEs cannot describe their detailed

classification. For example, CVE-2010-4250 [37] is bundled with

CWE-399 (Resource Management Errors). However, with our

analysis, it can be further classified into a child category CWE-

401 (Memory Leak), which is more precise.

(3) Missing: Some CVE entries do not connect to any CWEs, such

as CVE-2015-3636 [38].

We overcome the above problems by relying on a rigorous review

and remediation by our professionals. For each project, we sort the

types as per the number of contained vulnerabilities in descending

order and calculate the cumulative percentage of vulnerabilities

along with type. Figure 5a shows that 20% of types contain 70%

of vulnerabilities. Besides, we list the top 3 types of each project

as shown in Table 2. From this table, the 5 projects vary from the

most 3 types. For FFmpeg, integer overflow (CWE-190) and numeric

errors (CWE-189) are widely present. That is because FFmpeg is a

multimedia encoding/decoding library, which originally involves

a large number of arithmetic operations. For Linux, CWE-264 is

among the top 3 types. It implies that privileges, permissions and

access controls are the most important functionalities offered by

an operating system kernel. Massive amounts of code are imple-

mented to protect the system’s resources and, however, induce a

considerable number of vulnerabilities.

Finding 4. For one C/C++ investigated project, 70% of vulnerabilities

fall into 20% of types; the top 3 types account for nearly 50% of vul-

nerabilities averagely. Moreover, the most likely vulnerability types

existing in one project largely depend on the project’s core functional-

ities and programming languages.

3.2.1 Changes of Top Types over time. How do the types with the

most vulnerabilities change over time? We evaluate this temporal

effect by counting the detected vulnerabilities of the top 3 types

over years and present the change curve in Figure 5b. From the

figure, we conclude that:
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Table 2: The most 3 vulnerability types in each project.

Project 1st Type 2nd Type 3rd Type

FFmpeg CWE-190 CWE-119 CWE-189

ImageMagick CWE-401 CWE-119 CWE-457

OpenSSL CWE-310 CWE-119 CWE-399

PHP-SRC CWE-119 CWE-416 CWE-20

Linux CWE-457 CWE-264 CWE-119

Finding 5. The top types in a project are not dramatically affected by

time, and will remain the majority in future. It implies that security

analysts can spend prioritized efforts auditing vulnerabilities of the

popular types based on the historical data.

3.3 Developer Distribution

Vulnerability developer: In this paper, we regard non-blank

and non-comment lines deleted in a vulnerability-related commit as

the vulnerable code, and for the commits that only insert lines of code,

corresponding code will be markedmanually. Developers creating such

code are thereby responsible for the introduction of vulnerabilities.

In this section, we make use of command “git blame” to iden-

tify the developer(s) for each vulnerability. For each developer, we

count the number of vulnerable lines introduced or contributed by

him/her. We sort the developers in a project as per the number of

their introduced vulnerable lines in descending order.

From Figure 6, we can see all vulnerabilities of a project are

introduced by less than 10% of its developers. It means that most

of the developers seldom introduce any vulnerabilities. The code

proportions contributed by vulnerability developers vary from 60%

to nearly 100%. In other words, for a certain project, there exist

such developers that contribute little proportion of code lines but

introduce more vulnerabilities.

Finding 6. Almost all of the vulnerabilities are introduced by less

than 10% of developers for a project. Such 10% developers contribute

from 60% to nearly 100% code, which varies cross projects depending

on the number of their developers.

3.3.1 Developers’ Type Preference. Are developers prone to intro-

ducing vulnerabilities of the same type? If so, security analysts

can try to discover new vulnerabilities of the same type in other

projects to which the developer contributes. In the meantime, we

can identify the inexperienced developers of secure programming.

To this end, we compute the proportion of vulnerabilities with the

top 1 type and the top 30% of types to all vulnerabilities introduced

by a developer, shown in Figure 7a and 7b. For FFmpeg, 10% of

developers introduce only one type of vulnerabilities, and the intro-

duced vulnerabilities merely take up a small portion. There are 21

developers who introduce at least 10 vulnerabilities in project FFm-

peg. Further, we find that they are of various types, and over 60%

of them belong to the top 3 types. We conclude:

Finding 7. Although we cannot speculate the type preferences of

the developers who introduce < 10 vulnerabilities, it does exist in the

remaining more productive developers. Therefore, this offers a guid-

ance for prioritized code review in terms of the types of vulnerabilities

likely to be introduced by a certain developer.

4 RQ2: VULNERABILITY DEPENDENCY

Security researchers often find 0-day vulnerabilities in close prox-

imity to 1-day vulnerabilities. For example, Jia et al. [28] found two

new Microsoft Word vulnerabilities when generating the PoC of

CVE-2014-1761. The illustrative example in Figure 1 also shows that

this phenomenon is not just by accident. To explain why vulnera-

bilities often appear in near distance, we measure their distances

and build the semantic relations between vulnerabilities, .

4.1 Vulnerability Distance

We have constructed vulnerability call graphs for each project

and group vulnerabilities together in Section 2. Given one vulner-

ability call graph G (F , V , δ ) (as Definition 1) and two vulnerable

functions v1 and v2, where v1,v2 ∈ V , the distance between v1
and v2 is computed by:

d(v1,v2) = argmin
n

|{ f1, ..., fn }| − 1

where fi ∈ F , f1 = v1, fn = v2, and (fi , fi+1) ∈ δ or

(fi+1, fi ) ∈ δ . The minimal value for n is 2, which means the

two vulnerable functions have a direct call relationship in the call

graph. If the distance is 2, there must be an intermediate function

connecting the two vulnerable ones. We compute the distance by:

first converting the directed vulnerability call graph into an undi-

rected graph by eliminating the arrows of calls; then computing

the shortest path for these two vulnerable functions in the graph.

In light of the distance between vulnerabilities, we can slice one

call graph into small clusters. In particular, we define:

Definition 2. A k-cluster C is a slice from the entire call graph

G , while for all vulnerable functions v1,v2 ∈ C , d(v1,v2) <= k, and

for every vulnerable function v ′ ∈ G/C , d(v1,v
′) > k.

We slice the VCG of a project into a number of 1-clusters and 2-

clusters, respectively. Then we count the number of vulnerabilities

in these clusters to check the percentage of vulnerabilities they

contribute.We plot Figure 8a and 8b to demonstrate the contribution

rates of 1-cluster and 2-cluster, respectively. In Figure 8a, only

FFmpeg and ImageMagick have the phenomenon that 30% largest

1-clusters account for more than 60% vulnerabilities.

But for the other 3 projects, such clustering phenomenon is not

obvious. Moreover, we can see that about 20% of all functions can

be sliced into 1-clusters for a project. As for 2-cluster, the largest

2-cluster in the projects consists of 80% - 100% of the vulnerabilities.

Based on the analysis, we conclude:

Finding 8. The locations where vulnerabilities emerge are very con-

centrated. For each investigated project, more than 80% of vulnerable

functions assemble in one single 2-cluster.

4.2 Patterns of Dependency

In the previous section, we obtain a primary 2-cluster for each

project. The primary 2-cluster contains 80% - 99% of vulnerable

functions, however, it accounts for about 50% of all functions of a

project. In order to further study the relations, we formulate four

patterns of dependency relations:

• Common Parent: two vulnerable functions have a common

predecessor node (function) in the call graph. The predecessor

function can be either vulnerable or non-vulnerable.
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(a) FFmpeg. (b) ImageMagick. (c) PHP-SRC. (d) OpenSSL. (e) Linux.

Figure 6: Alberg diagrams showing the percentage of LOCs over the percentage of all developers for the projects. Red line

represents vulnerable lines introduced by developers.

(a) Num. of vulnerabilities with

30% types versus developers for

each project.

(b) Num. of vulnerabilities with

the most type versus developers

for each project.

Figure 7: Developer distribution diagram

(a) k=1 (b) k=2

Figure 8: Alberg diagrams showing the percentage of vulner-

abilities over the percentage of k-clusters for each project

• Common Child: two vulnerable functions have a common suc-

cessor node (function) in the call graph. Here we consider the

pattern only when the successor is also vulnerable.

• One Jump Call: one vulnerable function calls an intermediate

non-vulnerable function which has a direct call to the other

vulnerable function.

• Direct Call: one vulnerable function has a direct call to the other.

One vulnerability-related commit may alter multiple functions

so that these functions are all tainted with the vulnerability.

Finding 9. More than 60% vulnerable functions of a project have

at least one basic call-relation to another vulnerable function with

different vulnerabilities.

As shown in Figure 10, for each project, we count the number

of vulnerable function pairs according to each basic dependency

relation. Further, we calculate the intersection of four relation sets

in which an element is a vulnerable function pair. For example, in

FFmpeg, there are 233 vulnerable function pairs that have common

parent relation; among these, three pairs also have common child

relation, another three pairs have direct call relation, two pairs have

one jump relation, one pair has direct call and one jump relation at

the same time. Besides, we count the total number of vulnerable

functions in the union of four dependency relation sets. For example,

72% vulnerable functions have at least one basic call relation with

another vulnerable function and they have different vulnerabilities.

In all, for more than 60% vulnerable functions, there exists an-

other vulnerable function in the call graph between which the

distance is no more than 2. It inspires that one is likely to discover

new vulnerabilities in a function that has the above types of depen-

dency relations with the already-known vulnerable functions.

4.3 Semantics of Dependency

In this section, we intend to identify what code structure and

relations exist between vulnerable code blocks.

4.3.1 Manual Analysis. Given a vulnerable function pair (v1, v2)
complying with one of the four aforementioned dependency pat-

terns, three experts spent six person months to conduct a rigorous

and manual code review procedure, in order to determine the cor-

relations between vulnerable code in v1 and that in v2.
For example, in Figure 9, CVE-2013-0863 resides in the function

old_codec47 and CVE-2013-0877 occurs in old_codec37. Both
vulnerable functions are called by a common parent. By reviewing

the code at call sites, we determine that there are four types of

relations between them: (1) these vulnerable functions are in two

parallel switch-case statements to decode different video types; (2)

both vulnerabilities are caused by the same missing check on the

third parameter of function rle_decode, i.e., they have similar op-

erations; (3) both vulnerability are related to the same key variable

decode_size, which holds some values read from input; and (4) they

both deal with multimedia files of SANM format.

4.3.2 Semantic Relations. Finally, we identify 10 types of semantic

relations between vulnerable code as follows.

• R1: two vulnerable functions are parallel from the view of con-

trol flow. In particular, two functions may be called from differ-

ent cases inside a switch statement, such as CVE-2013-0845

(FFmpeg: 0ceca26) and CVE-2012-2775 (ffmpeg: 9d3032b).

• R2: vulnerable code in two functions executes similar or same

operations. e.g., CVE-2013-0863 and CVE-2013-0877.

• R3: vulnerability-related code in two functions has similar or

same code structure in syntax, such as OSS-Fuzz issueNO.1903 [23]

(FFmpeg: 58f8cd4) and NO.1506 [22] (FFmpeg: 5ac17f1).
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static int process_frame_obj(SANMVideoContext *ctx)
{

…
switch (codec) {
case 1:
case 3:

return old_codec1(ctx, top, left, w, h); break;
case 37:

return old_codec37(ctx, top, left, w, h);break;
case 47:

return old_codec47(ctx, top, left, w, h); break;
…

}

static int old_codec37(SANMVideoContext *ctx,
int top, int left, int width, int height) {

….
+  if (decoded_size > height * stride - left - top * stride) {
+        decoded_size = height * stride - left - top * stride;
+        av_log(ctx->avctx, AV_LOG_WARNING, 
+                   "decoded size is too large\n");

}
…
switch (compr) {

…
case 2:

if (rle_decode(ctx, dst, decoded_size))
return AVERROR_INVALIDDATA;

…}…}

CVE-2013-0877;  Commit-365270a

static int old_codec47(SANMVideoContext *ctx, 
Int top, int left, int width, int height) {

…
+   if (decoded_size > height * stride - left - top * stride) {
+        decoded_size = height * stride - left - top * stride;
+        av_log(ctx->avctx, AV_LOG_WARNING, 
+                    "decoded size is too large\n");

}
…
switch(compr){

…
case 5:

if (rle_decode(ctx, dst, decoded_size))
return AVERROR_INVALIDDATA;

…}….}

CVE-2013-0863; Commit-62c9bed

call-to

Figure 9: Example: Cross-function Semantic Relation Manual Analysis.
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Figure 10: Venn diagrams showing the statistics of dependency patterns. An element is a pair of vulnerable functions that

follows some Call-Relation Unit.

• R4: the variables involved in vulnerabilities have data flow rela-

tion in between. e.g., OSS-Fuzz issue NO.7420 (FFmpeg: dce80a4)

and NO.4415 (FFmpeg: 1d0817d).

• R5: both the functions involve the same variable(s). e.g., CVE-

2015-6818 and CVE-2017-7863.

• R6: the variables involved by vulnerabilities have control flow

relation in between. e.g., OSS-Fuzz issue 2873 (ffmpeg: 6f03ffb)

and 3444 (ffmpeg: dcf9bae).

• R7: vulnerability-related code in two functions are under the

samemacro condition. For example, OSS-Fuzz issue 1471 (ffmpeg:

3a0ff78) and 1878 (ffmpeg: 6b9cb5d).

• R8: two functions are used to deal with the same data formats.

e.g., CVE-2013-0863 vs. CVE-2013-0877.

• R9: two functions are patched in one commit. e.g., OSS-Fuzz

issue 5894 (FFmpeg: 647fa49).

• R10: two functions are called in the same case of a switch. e.g.,
OSS-Fuzz issue 3444 (3a0ff78) and 2581 (2886142).

Figure 11 shows an illustrative example about these semantic

relations in a 2-cluster from project FFmpeg. Function aac_decode
_frame_int has R1 relation with function decode_ics. The code
shows the vulnerability of aac_decode_frame_int occurs within

a case block of a switch statement, while function decode_ics
is called from another case block. So the two vulnerabilities are

parallel in the view of control flow. Both the vulnerabilities “OSS-

Fuzz issue 1471” in subband_scale and “OSS-Fuzz issue 1878” in

noise_scale are caused by an overlarge left-shift offset, inducing

integer overflow. So these two functions have R2 relation. At the

same time, related code blocks of these two vulnerabilities are simi-

lar in syntax, indicating R3 relation. Besides, subband_scale and
noise_scale are both called in function decode_spectrum_and_

1

1

1

1

2

1

2

1

1

3

1

4

2

4

3latm_decode_frame

read_audio_mux_element

read_payload_length_info

push_output_configuration

aac_decode
_frame_int

decode_cce

spectral_to_sample

apply_tns

apply_ltp

decode_ics
decode_ics_info

apply_prediction

predict

decode_spctrum_and _dequant

subband_scale

noise_scale
apply_dependent_coupling_fixed

apply_independent_coupling_fixed

round

R9

R9

R4

R1

R1

R2

R6

R10R10

R5,R6

R2,R3

R2 R3,R4,R7

R2,R3,R5

R3 R4

Figure 11: A simplified 2-cluster example from project FFm-

peg with multiple semantic relations between functions. A

red solid circle represents a vulnerable function with a num-

ber inside counting the contained vulnerabilities; A hollow

circle represents a non-vulnerable function; A black arrow

represents the call relation between functions; A dotted line

with a label represents semantic relations between them.

dequant, and the vulnerability-related variable in subband_scale
has a data flow to the vulnerability-related variable in noise_scale,
which denotes R4 relation. There is no data flow between function

apply_dependent_coupling_fixed and apply_independent_c
oupling_fixed. But two vulnerabilities “OSS-Fuzz issue 1851” and
“issue 1762” in these functions manipulate the same variable of the

parameter object, so they have R5 relation.

Because the analysis is time-consuming and labor-intensive, we

just took FFmpeg as an example and sampled 324 vulnerable func-

tion pairs with these semantic relations, According to the results

summarized in Table 3, most (70.5%) of vulnerable function pairs
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Table 3: Inter-function semantic relations underlying the

four patterns from project FFmpeg. Notedly, a pair of vul-

nerable functions may possess multiple relations.

Relation
# Common
Parent

# Common
Child

# Direct
Call

# One
Jump

# Total

R1 64 0 4 5 73

R2 86 10 13 4 113

R3 33 1 7 1 42

R4 42 5 14 11 72

R5 48 4 9 5 66

R6 25 10 21 21 77

R7 6 0 1 1 8

R8 170 19 36 16 241

R9 6 2 7 0 15

# Total
of Pairs

241 19 40 24

are due to processing the same file format (i.e., R8). For Common-

Parent relation, 26.6% of function pairs have Parallel Control Flow

relation, while pairs with the other three relations rarely have R2

relation. For vulnerabilities fromCommon-Parent andCommon-

Child pairs,R2 is the most common. While for vulnerabilities from

Direct-Call and One-Jump pairs, R6 is the most common.

5 RQ3: VULNERABILITY RECURRENCE

It is observed that some functions are constantly found with

new vulnerabilities and hence have undergone several security

fixings. We call them high-frequency vulnerable functions and

in this section, we compute their statistics, measure the duration

between two disclosed vulnerabilities, and demystify the primary

reasons of this recurrence phenomenon.

5.1 High-frequency Vulnerable Functions

For all target projects, on average 25.5% of functions have been

discovered with at least 2 vulnerabilities.

Statistics. For each project, we compute the proportion of such

functions in the set of vulnerable functions, shown as Column 2 in

Table 4. The proportions of high-frequency vulnerable functions

vary from 12.7% (OpenSSL) to 38.3% (ImageMagick). In addition,

the average, median, maximal and minimal numbers of vulnerable

functions are also presented from Column 3 to 6. More specifically,

function mpeg4_decode_sprite_trajectory in FFmpeg has been

found with 13 vulnerabilities. The function SPL_METHOD(Array,u
nserialize) has been found with 8 vulnerabilities.

Duration. We investigate the time window during which two suc-

cessive vulnerabilities are discovered in the same function, and

present the result in Table 5. For OpenSSL, the average time inter-

val between the disclosure dates of two successive vulnerabilities

in the same function is 1024.16 days, and the median value is 671.57

days. However, for ImageMagick, the average time interval is 65.62

days and the median is only 9.54 days. On average, the recurrence

phenomenon happens in a function with a 514.95-day interval. It is

worth mentioning that the time interval can be 0. This is because

multiple vulnerabilities are sometimes patched in the same commit,

e.g., CVE-2013-7267 and CVE-2013-7266.

Finding 10. The recurrence phenomenon occurs in a considerable

number (25.5%) of functions with 3 times on average. However, the

interval between two security fixings can be up to 514.95 days.

Table 4: Statistics of high-frequency vulnerable functions.

Project
% of high-frequency

functions
Avg. Median Max. Min.

FFmpeg 27.1 2.59 2 13 2
ImageMagick 38.3 4.85 3 36 2
OpenSSL 12.7 2.59 2 6 2
PHP-SRC 17.2 2.62 2 8 2
Linux 12.8 2.37 2 8 2

Average 25.5 3.00 2.2 14.2 2

Table 5: Statistics of time interval when two successive vul-

nerabilities are discovered in a same function.

Project Avg. (day) Median (day) Max. (day) Min. (day)

FFmpeg 191.52 29.28 2245.15 0.0
ImageMagick 65.62 9.54 1123.38 0.0
OpenSSL 1024.16 671.57 4612.09 0.0
PHP-SRC 496.87 189.62 4005.45 0.0
Linux 796.57 457.29 4661.33 0.0

Average 514.95 271.46 3329.48 0.0

Figure 12: Vulnerability recurrence example in PHP-SRC

5.2 Primary Reasons

What’s the reason behind the recurrence phenomenon and what

are the semantic relations between vulnerabilities within the same

function? To answer these questions, we manually analyze 1,095

vulnerabilities occurred in 348 high-frequency vulnerable functions

from project FFmpeg, OpenSSL and PHP-SRC and ImageMagick.

5.2.1 Manual Analysis. Three analysts were designated to identify

the causes of the recurrent phenomenon and the intra-function rela-

tions between vulnerabilities. Taking Figure 12 as an example, two

vulnerabilities were found in one function _xml_characterDataH-
andler. The first vulnerability (CVE-2013-4113), which causes heap
corruption, was patched with a sanity check in Line 1087. However,

this sanity check has been proved incomplete, since a heap buffer

over-read could happen if the integer variable parser->level is
zero or less. By using a customized code change tracker based on

Git (Section 2.4.2), we find that another commit dccda88 fixed this

problematic patch. After that, one analyst determines the cause of

the latter vulnerability as incomplete fix.

5.2.2 Semantic Relations. We spend 3 person months identifying

the following semantic relations between vulnerabilities within the

same function:

• R1: Incomplete fix or fix introduction.Another vulnerability

occurs because the fix to the former vulnerability is incomplete or
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it introduces new risks. e.g., CVE-2016-6307 (openssl: acacbfa)

vs. CVE-2016-6309 (openssl: 4b390b6).

• R2: Same or Similar Vulnerability Pattern. Two vulnera-

bilities have similar or same vulnerability pattern. e.g., both

CVE-2015-6835 (php-src: df4bf28) and CVE-2016-6290 (php-src:

8763c60) are induced because of improper exception handler.

• R3: Same or Similar Code Structure. The code blocks where

vulnerabilities exist are same or similar in syntax. e.g., CVE-2014-

3515 (php-src: 88223c5) vs. CVE-2016-7417 (php-src: ecb7f58).

• R4: Involved SameVariable. Two vulnerabilities are directly or

indirectly related with the same variable. For example, CVE-2019-

9022 (php-src: 8d3dfab) vs. CVE-2014-4049 (php-src: b34d784).

• R5: Parallel Control Flow. Related code is located in parallel

branches, such as different switch-cases. e.g., CVE-2012-0852

(ffmpeg: 6087080) vs. CVE-2013-0844 (ffmpeg: f18c873)

Table 6 lists the number of detected relations existing between

vulnerabilities in the four projects. Based on the result, we find:

Finding 11. Incomplete fix and fix introduction are the major reason

why vulnerabilities repeatedly occur in the same function. It implies

that some developers likely fail to fix all existing vulnerabilities or

make new ones stemming from the patching code.

This problem happens many times as observed in our dataset,

for instance CVE-2016-6307 (OpenSSL: acacbfa) vs. CVE-2016-

6309 (OpenSSL: 4b390b6) and CVE-2013-4113 (PHP-SRC: 7d163e8)

vs. CVE-2016-4539 (PHP-SRC: dccda88). It raises an alarm for the

developers that they need to pay more attention to the security

of patches, avoiding introducing additional vulnerabilities. In the

meantime, this finding can motivate researchers to analyze and

evaluate the security of patches, just as UC-Klee [43].

We also observe that R2 occurs with the second most frequency.

This can explain why works like SPAIN [59] can be effective in de-

tecting similar vulnerabilities to some extent. Different from SPAIN,

which focuses on discovering inter-function similar vulnerabilities,

we observe that there exist many similar vulnerabilities within one

function. This conclusion has at least two benefits: on one hand, it

stresses the importance of research on similar or cloned vulnerabil-

ities [31]. On the other hand, it can be used by security researchers

to quickly detect other vulnerabilities in a cost-effective way.

Moreover, we observe that R3 occurs in all of the projects. If two

blocks of code are of a high similarity, they can be easily matched

by code clone techniques intuitively. However, according to our

investigation, developers prefer not to perform such a code search

and merely fix the reported vulnerabilities. More specifically, when

a developer tries to fix a reported vulnerability, she/he only locates

the root causes perhaps with PoCs and then makes all the neces-

sary changes to code to eliminate the reported vulnerabilities. But

the developer fails to audit other similar or cloned code that may

contain similar vulnerabilities.

It sheds light on the necessity of a robust vulnerability response

process, from where software engineering practitioners can re-

search to improve the process, figure out more vulnerability detec-

tion solutions and empirically study the features of vulnerabilities.

Finding 12. There exists a "Report One and Patch One" (ROPO) prob-

lem commonly in vulnerability fixing. It reveals one weakness of the

Table 6: Intra-function semantic relations of vulnerabilities

within one function

Relation # FFmpeg # ImageMagick # OpenSSL # PHP-SRC

R1 83 53 6 40

R2 66 32 5 16

R3 9 6 3 10

R4 39 8 0 10

R5 4 9 0 7

pcd::c@@
ReadPCDImage

quantum-private::c@@
ScaleCharToQuantum

pixel-accessor::c@@
SetPixelBlue

distort::c@@
RotateImage

pcd::c@@
DecodeImage

image::c@@
CloneImage

image::c@@
DestroyImage

image::c@@
SetImageExtent

memory::c@@
RelinquishMagickMemory

memory::c@@
AcquireQuantumMemory

CVE-2017-18251
COMMIT:2cf74b5
COMMIT:3d9bb55

CVE-2016-7516

CVE-2016-5688
CVE-2017-9501

COMMIT:7f52c1f
COMMIT:90c0a13
COMMIT:38b0717

COMMIT:3e7eda2

Figure 13: Illustrative graph for new vulnerability detection

vulnerability fixing process, and inspires many future research di-

rections such as the enhancement of patching process and efficient

detection of similar or cloned vulnerabilities.

6 APPLICATION OF FINDINGS

Our findings have a great potential for hunting new vulnerabili-

ties. To evaluate their efficacy, we implement two proof-of-concepts

that integrate the above findings.

Guided Code Review. We take ImageMagick as an example.

According to Finding 5, the type CWE-401 (Memory Leak) con-

sists of the largest number of vulnerabilities, and it sustainedly

contributes the majority of vulnerabilities. Hence we prioritize our

efforts to explore new Memory Leak vulnerabilities. Further, ac-

cording to our observation, most of Memory Leak vulnerabilities in

ImageMagick are caused by missing the memory freeing operation

in exception handlers. We implement a prototype to search simi-

lar patterns. Finding 8 implies that most of vulnerable functions

are adjacent with each other in the vulnerability call graph. So

we prioritize our review targets to such functions that have de-

pendency relations (e.g., Common Parent) with known vulnerable

functions. Figure 13 illustrates just the case. Function DecodeImage
has Common Parent, Common Child and One Jump relation

with other vulnerable functions. Using these findings, we success-

fully found a new Memory Leak vulnerability (CVE-2019-7175 [1])

in DecodeImage. Moreover, we found another 4 new vulnerabilities

(CVE-2019-7395, CVE-2019-7396, CVE-2019-7397,CVE-2019-7398) in a

similar way.

Directed Fuzzing.We observed that the k-cluster phenomenon

is very common in vulnerability distribution as stated in Finding 8.

We enhance the AFL by directing the seed selection and prioritiz-

ing mutation strategy. Testing on FFmpeg, we first get the largest

2-cluster and then use this information to select better seeds. In addi-

tion, we modify the priority strategy and assign the functions in the

2-cluster the with higher priorities. Finally, we discovered five new
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vulnerabilities (Commit-3713833, CVE-2017-11399, CVE-2017-11719,

CVE-2017-14767, CVE-2017-16840) of project FFmpeg.

In all, we have undertaken responsible disclosure, reported

10 vulnerabilities to the related vendors and finally got 9 new

CVE numbers from these target projects. These two proof of

concepts above show that our findings can facilitate the vul-

nerability detection to a large extent.

7 RELATEDWORK

Vulnerability Analysis. Shahzad et al. [48] characterized vul-

nerabilities in a wide range of aspects including the phases when

the vulnerabilities were introduced, how they evolved over the

years, and functionalities of vulnerabilities. Ruohomen conducted

a release-based time series analysis for Python vulnerabilities [44],

and found the appearance probabilities of vulnerabilities in different

versions obeyed the Markov property. Kim and Lee [30] analyzed

the cloned vulnerabilities and summarized the corresponding root

causes as well as their life cycle features. By examining the re-

sponse from 21 software vendors to 241 vulnerabilities, Arora et

al. [11] studied the influential factors to the timeliness of security

patches and unveiled the relationship between competition and

software quality. Li and Paxson investigated over 4,000 security

patches for 3,000+ vulnerabilities and unveiled the patching char-

acteristics with regard to the development life cycle [32]. Apart

from vulnerability distribution, our study focuses on unveiling the

semantic relations between vulnerabilities. The analysis results can

explain why vulnerabilities occur and further assist in vulnerability

detection. Gkortzis et al. [21] framed a vulnerability dataset from

open-source systems, and proposed several metrics to character-

ize these vulnerabilities. Besides vulnerability code and associated

properties, our dataset is also populated with many mature yet handy

features including vulnerability introducer and call relations.

Vulnerability Prediction. Shin andWilliams [49] unveiled that

the fault prediction model and the vulnerability prediction model

(VPM) provided similar prediction performance [51]. Zimmermann

et al. [63] found that software measures could only achieve a high

precision rate but low recall rate in vulnerability prediction. Doyle

and Walden [13] observed a trend of decreasing vulnerability den-

sity over time. Morrison et al. [39] concluded that VPMs must be

refined to achieve actionable performance. Scandariato et al. [46]

applied text mining source code to predict vulnerable software com-

ponents. Perl et al. built a mapping from the CVEs and vulnerability-

contributing commits and developed an SVM-based classifier to

identify potential vulnerabilities in a large code base [42]. Our study

concludes many significant findings and insights that can aid both

static- and dynamic- analysis based vulnerability prediction (cf. Sec-

tion 6).

8 DISCUSSION

Threats to validity. Data quality of vulnerabilities. Vulnera-

bility entries in NVD/CVE repos contain many human-crafted

pieces of information such as vulnerability type, description, and

references to vulnerable code. Therefore, errors and inaccuracies

inevitably flow in and degrade the quality of data. Our manual

auditing cannot ensure a complete solution for solving this; We

determine the position of vulnerabilities by checking what code is

deleted in a commit or influenced by the added code. However, it

is non-trivial to identify the exact scope of vulnerable code, and

any inaccurate labeling can have a negative impact on the analysis

results. Additionally, we did not consider the changes to a pure

data structure or variable, which take less than 1% in our dataset.

Instead, we concentrate on the changes that alter actional code.

Generalization limits.Although our analysis is built on a large

number (3,938) of vulnerabilities from five popular projects with

varying functionalities, we cannot make our findings as a gen-

eral claim. On one hand, our target projects are limited to C/C++

projects. The findings may not apply for projects written in other

languages. For example, buffer overflow (CWE-119) is never a secu-

rity issue in Java projects. On the other hand, we only analyzed 5

projects due to the overwhelming manual work. It could be insuffi-

cient to make a general claim from only 5 projects’ observations.

In all, while there is an indication that these findings may persist

across C/C++ projects, further studies on larger project populations

written in various languages are required to draw a general claim.

Future research direction. Our study as well as our findings

can inspire several future research directions. For example, the

semantic relations between vulnerabilities can facilitate the under-

standing of their root causes; the dependency patterns which reveal

the call relation and distance can power static analysis techniques

of more efficiency; the ROPO problem in Finding 12 motivates re-

searchers to re-inspect the patching process, keep more attention

on the security of patches, and work out a better solution.

9 CONCLUSION

We conduct a large-scale empirical study of security vulnerabili-

ties, evaluating 3,938 vulnerabilities from 5 popular projects. First

the vulnerabilities are attributed with descriptive information (e.g.,

type, involved developer), and blamed code. Then we leverage a

lightweight static analysis to build the calling connections between

vulnerabilities and extracted code semantics to represent them. We

have extensively characterized vulnerabilities from three aspects:

distribution, dependency and recurrence, and distilled 12 findings

that are beneficial for the future research. Guided by our findings,

we developed proof-of-concepts and successfully discovered 10

zero-day vulnerabilities.
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