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Abstract: With the prosperity of the Internet of Things (IoT) industry environment, the variety and
quantity of IoT devices have grown rapidly. IoT devices have been widely used in smart homes,
smart wear, smart manufacturing, smart cars, smart medical care, and many other life-related fields.
With it, security vulnerabilities of IoT devices are emerging endlessly. The proliferation of security
vulnerabilities will bring severe risks to users’ privacy and property. This paper first describes the
research background, including IoT architecture, device components, and attack surfaces. We review
state-of-the-art research on IoT device vulnerability discovery, detection, mitigation, and other related
works. Then, we point out the current challenges and opportunities by evaluation. Finally, we forecast
and discuss the research directions on vulnerability analysis techniques of IoT devices.

Keywords: internet of things (IoT); vulnerability discovery; vulnerability detection; vulnerability
mitigation

1. Introduction

Internet of Things (IoT) is becoming the most popular and practical online platform. It connects
various sensors and controllers to the Internet and helps to achieve seamless communication between
people and things. It tends to be the crucial future of the Internet. Especially in recent years, with the
prosperity of the IoT industry, the variety and quantity of devices have grown rapidly. Globally,
the total number of current active IoT devices has reached 7 billion [1]. They have been widely used
in smart homes, smart wear, smart manufacturing, smart car, smart medical care, and many other
life-related fields. We believe that it will greatly improve the quality of our lives.

At the same time, security vulnerabilities of IoT devices often occur, and they are very difficult
to be eliminated. HP’s report showed that 70% of IoT products contain security vulnerabilities, and,
on average, there are 25 vulnerabilities per device [2]. The attacker engaged in various illegal activities
by maliciously exploiting vulnerabilities and controlling devices. The most well-known case is in 2016;
the Mirai virus controlled hundreds of thousands of IoT devices and built botnets by manipulating the
controlled devices. It launched Tbps-level denial-of-service (DoS) attacks on targets, including the DNS
service provider Dyn causing severe problems such as partial Internet paralysis in the United States [3].
In conclusion, with the universal usage of IoT devices, the proliferation of security vulnerabilities will
bring severe risks to the security and privacy of the users and even the safety of human lives and
property.

Facing frequent attacking risks, IoT security research has become increasingly popular. After the
concept of “Internet of Things” was first proposed by American Auto-ID in 1999 [4], the security

Future Internet 2019, 12, 27; doi:10.3390/fi12020027 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0001-7462-9176
http://dx.doi.org/10.3390/fi12020027
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/12/2/27?type=check_update&version=2


Future Internet 2019, 12, 27 2 of 23

researchers have also contributed to IoT by working on standards of security architecture and
communications [5,6]. Subsequently, there was a lot of discussion about IoT security issues [7–12].
Zhang et al. [13] and Mahmoud et al. [14] pointed out the challenges and research directions. Therefore,
researchers began to use traditional security research methods in the field of IoT Security [15]. With the
development of artificial intelligence (AI), the survey of the machine and deep learning methods for
IoT security has also emerged [16]. Alrawi et al. [17] systematically summarized the IoT vulnerabilities
from device, mobile application, cloud endpoint, and communication in smart homes. For the
summary of vulnerability analysis, Xie et al. [18] summed up techniques of detecting IoT vulnerability.
Recently Zheng et al. [19] published a survey of IoT vulnerability discovery techniques. In the two
papers above, the boundaries between vulnerability discovery and vulnerability detection technologies
are blurred. In this paper, the technology of vulnerability discovery is to mine unknown vulnerabilities,
and the technology of vulnerability detection is to detect the existence of known vulnerabilities.
Through the above investigations, we find that the current study focuses on IoT security issues
and lack analysis techniques. Secondly, in this kind of vulnerability analysis, they mainly focus on
vulnerability discovery and detection and lack attention to the techniques of vulnerability mitigation.
There is a problem that the technical summary of IoT security is not comprehensive enough.

In order to overcome the above problem, we want to make some contributions in three aspects:

• First, we shift our focus from IoT architecture to IoT devices. Second, the classification of IoT
device security technologies has been refined. In addition, we summarize the current research,
which is considered from the basic framework of vulnerability analysis, discovering the unknown
vulnerability, detecting known vulnerability, and mitigating vulnerability.

• We evaluate the current research of vulnerability analysis on IoT devices. In addition, we analyze
in depth the reasons that hinder the development of security technologies and point out the
challenges and opportunities.

• We review the technological development context and point out future research directions for
related researchers.

This paper is organized as below: Section 2 describes the IoT security background. It introduces
the IoT architecture, the device components, and the attack surfaces. Section 3 reviews current
research works related to IoT device security, including vulnerability analysis, discovery, detection,
and mitigation. Section 4 summarizes the challenges and opportunities based on the evaluation of
vulnerability analysis technology. Section 5 points out the hot-spot directions of future research. Finally,
Section 6 gives the conclusions.

2. Background

2.1. IoT Architecture

With the rapid development of the Internet, more and more household and industrial devices are
connected to the Internet, which offers us diversified lives. IoT architecture is mainly developed in
two directions: consumer-level and industry-level.

On the consumer-level, we have several device types like industrial manufacturing, smart home,
smart medical, and smart cars if they are divided by application scenarios. Among them,
the development of smart home is relatively mature. The Internet giants—Samsung, Google, Apple,
and XiaoMi have a large share of the market. In addition, the IoT platforms like SmartThings [20],
Google Weave [21], Apple HomeKit [22], HomeAssistant [23], and XiaoMi IoT [24] are released.
By investigating these platforms, we find that most IoT adopts the “Device <->Cloud<->User”’s
architecture, as Figure 1 shows. The smart devices are generally deployed at homes. They communicate
with cloud servers, and directly or indirectly access the network through WiFi [25], ZigBee [26],
Blue-tooth [27], or other protocols. They upload the data that are collected by the sensor and receive
the control command, which is issued to the actuator. The IoT architecture not only relies on the cloud
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from the vendor, but also on the cloud from a third party. It supports mutually and offers diverse
services for various functions. Users can connect to the cloud to view the status attribute and download
data by their mobile phone or PC. For some simple scenarios such as wearable devices, the “Device
<-> User” architecture is more practical.

Figure 1. Internet of Things (IoT) architecture on the consumer-level.

On the industry-level, the IoT architecture continues the Information Technology (IT) approach to
centrally manage to interact between users and devices by servers in Figure 2. The difference is that the
apparatus must first communicate with the Programmable Logic Controller (PLC) through operational
technology (OT). Thus, the devices in the industry are equivalent to PLC and “sensors + actuators.”
Security research focuses on PLC. The “Device <-> User” architecture also exists in industrial scenarios.
Administrators use configuration software to control devices. Although user-oriented industrial
terminals such as smart meters have also tried the cloud model, there is no large-scale promotion due
to security considerations.

Figure 2. IoT architecture on the industry-level.

2.2. Device Composition

Whether a big and complex machine for car manufacturing or a small and smart bracelet
for wearing, they contain relatively fixed components such as chips, flash, firmware, and so on.
Its composition mainly includes hardware and software parts.

(1) Hardware parts:

• Logic chip. For complex devices, it has an operating system so that it needs multiple logic chips
or CPU. Simple embedded devices may only use a single microprocessor to run programs.

• Memory. Provides the storage space for system and program running, ranging from a few KB to
GB.
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• Flash storage. The location where the IoT device firmware is stored. Part of the device’s bootloader
is also stored in the flash.

• Network module. The difference between IoT devices and traditional embedded devices is that
they connect to the Internet. They generally adopt wireless technology to connect to the Internet
with the hub, such as access points (APs).

• Serial debug interface. The IoT device often requires means for communicating with the external
world for debugging. The serial debug interface could be to send and receive commands to
and from the vendor developers. One of the most commonly used interfaces is the universal
asynchronous receiver/transmitter (UART).

(2) Software parts:

• BootLoader. It is a small program. Before the IoT device system runs, it initializes the hardware
device and loads the firmware to the boot device. Thus, it brings the system’s software and
hardware environment to a suitable state to prepare the correct environment.

• Firmware. The firmware includes the operating system, file system, and service programs.
Security research on IoT devices generally starts with firmware analysis.

2.3. Attack Surface

IoT devices not only have attack surfaces in the field of traditional software security but also
introduce new attack surfaces due to their special structure and requirements. According to the IoT
architecture and device composition, attack surfaces can be divided into three layers in Figure 3.

Figure 3. Attack surface of IoT device.

2.3.1. Attack Surface on the Hardware Layer

Attack surface on the hardware layer is different from the traditional security field. It mainly
includes three aspects: unsafe debugging interface, unprotected flash chip, and leakage of sensitive
hardware information.

1. Unsafe debugging interface. When the IoT device is manufactured, the debug interface such
as UART is left on the circuit board to facilitate the repairing. If it is no authentication or weak
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authentication, attackers can obtain high authority shell to modify or replace the firmware by the
interface. The unsafe debugging interface is the first item on an IoT security check-list.

2. Unprotected flash chip. Because the flash chip is often used to store firmware, it has become
the focus of attention. If the chip is not read-write protected, security researchers can read the
firmware for analysis or write modified firmware to bypass authentication of interface access.

3. Leakage of sensitive hardware information. The hardware circuit layout is not well sealed.
Leakage of hardware information such as sounds and power consumption causes a side-channel
attack [28–31], which attackers can acquire important information such as encryption keys.

2.3.2. Attack Surface on the Software Layer

Attack Surface on the Software Layer corresponds to the software part of the bootloader and
firmware in the device composition. It mainly includes the following five aspects: unsafe bootloader,
unsafe operating system, leakage of sensitive information in firmware, unsafe application service,
and incorrect configuration strategy:

1. Unsafe bootloader. It is often easy to ignore the point of attack because the bootloader is a piece
of code that is loaded from the chip after the device running. Its function is to initialize the device
and load the firmware. Thus, it has a high risk when problems arise. For example, checkm8 [32],
the Boot ROM exploit, has widely been proclaimed as the most important single exploit ever
released for iPhone, iPad, Apple TV, and Apple Watch devices.

2. Unsafe operating system. Due to the short development cycle and lightweight requirements
of the IoT device, the kernel of the operating system is tailored, and the version is usually
not up-to-date, which causes various buffer overflow problems such as privilege escalation.
In addition, devices use various sensors and communication modules including a large number of
drivers in the kernel. For example, the Marvell WiFi chip driver was found multiple vulnerabilities
such as CVE-2019-14901, CVE-2019-14897, and CVE-2019-14896 [33]. They cause stack-based or
heap-based buffer overflow in the kernel. This is also an important part of the attack surface.

3. Leakage of sensitive information in firmware. Local storage of IoT devices generally uses a
lightweight storage solution. Developers often ignore security and use plain text or simply
encrypting data, which can easily lead to the leakage of sensitive information.

4. Unsafe application service. Application services development lacks security standards.
Simple and unsafe application code is compiled and used directly to speed up product
development. Therefore, it is easy to introduce unknown vulnerabilities. IoT security researchers
have discovered a large number of application vulnerabilities developed by manufacturers,
including backdoors that are unknown for some reason.

5. Incorrect configuration strategy. Services such as ssh, telnet are enabled for easy management of
IoT products. There will be configuration problems. Weak authentication policies are configured
by default, which allows attackers to easily obtain the shell of device. For example, Telestar Digital
GmbH IoT radio devices could be exploited by remote attackers to hijack devices by telnet servers
without authentication [34]. The vulnerabilities have been tracked as CVE-2019-13473 [35] and
CVE-2019-13474 [36].

2.3.3. Attack Surface on the Protocol Interface Layer

The attack surface on the protocol interface layer represents communication and application
programming interface (API). It involves the device directly controlled by the user side, the device
indirectly controlled through the cloud, and the above two types of communication process information
protection issues. Security on the protocol level is not involved. For example, the abuse of IoT
communication protocols and the AR-DDoS [37] attack is performed by the IoT communication
protocols Constrained Application Protocol (CoAP) [38], SSDP [39], and SNMP. Its target is not the
flaws of IoT devices. However, it is also an important research direction of IoT security. Attack surface
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on the protocol interface layer mainly includes the following three aspects: the unsafe interface of
remote management, leakage of sensitive information transmission, and weak authentication.

1. Unsafe interface of remote management. For portable management, IoT devices use remote
management interfaces such as HTTP services, which bring multiple vulnerabilities such as SQL
injection, Cross-site Scripting (XSS), and remote execution vulnerability.

2. Leakage of sensitive information transmission. The IoT communication protocol will use
weak encryption algorithms or even no encryption, which will lead to the leakage of sensitive
information. For example Passwords in the Air [40], the WiFi password is transmitted in plain text
when the IoT device is connected to the network.

3. Weak authentication. Due to security requirements, the management of IoT devices requires
authentication binding. However, a new attack surface has emerged. Attackers can bypass
authentication, duplicate bind, and obtain other user’s information. The Phantom Device
Attack [41] found four specific attack methods on this attack surface.

3. Vulnerability Analysis, Discovery, Detection, and Mitigation

At this stage, there is no precise classification of IoT security. In addition, the core of security
research is vulnerability. Therefore, we focus on the device’s vulnerability. Around its life cycle,
the research process is divided into three stages: discovery, detection, and mitigation. Because of
the particularity of IoT security, it is impossible to have standard interfaces to support analysis.
Thus, research on the basic analytical framework of IoT is also valuable to research content.
To comprehensively review IoT security technologies, we summarize by the following four aspects:
(1) Research on the basic framework of vulnerability analysis, which performs firmware simulation to
help analyze IoT security issues. (2) Research on vulnerability discovers the technology, which studies
methods to discover unknown vulnerabilities in IoT devices. (3) Research on vulnerability detection,
which studies methods to detect known vulnerabilities based on the features and signatures of existing
vulnerabilities. (4) Research on vulnerability mitigation, which studies methods to automatically fix
vulnerability or access control methods to limit malicious behavior. In addition, this section mainly
summarizes the IoT vulnerability analysis technologies, which require a series of pre-conditions, such
as firmware extraction [42]. Thus, we mark the technical requirements, but do not sum them up.

3.1. Research on the Basic Framework of Vulnerability Analysis

To address the growing concerns about the security of IoT systems, it is vital to perform an
accurate analysis of firmware binaries, even when the source code or the hardware documentation is
not available [43]. However, vulnerability analysis in the IoT security field is obstructed by the lack
of dedicated the basic framework. For example, the dynamic analysis relies on the ability to execute
software in a controlled environment, often an instrumented emulator [43]. Thus, the basic framework
mainly provides the features of dynamic debugging by semi-simulation and full simulation methods.
It can perform complex dynamic analyses to support IoT security research.

Technical requirements: The ability to fetch firmware of the IoT device.
For the lack of specialized analysis tools for firmware, especially dynamic analysis tools,

Avatar [43] proposed a framework to analyze firmware combining both simulated execution mode
on simulators and the actual execution mode on real devices. When the firmware is running in the
simulation mode, Avatar forwards the operation to the actual device in the case of input/output
(I/O) access. The real device returns the results to the simulator after dealing with operation so
that the simulator can continue the execution. It effectively solves the problem of specific peripheral
components without source code and documentation. Then, Prospect [44] and Surrogate [45] also
proposed similar dynamic analysis frameworks. Four years later, the author’s team of Avatar
re-developed Avatar2 [46], which allows security researchers to inter-operate between different
dynamic analysis frameworks, debuggers, simulators, and real devices. In addition, the authors
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also show how to use Avatar2 to record the execution flow of the device. Chen et al. [47] proposed
Firmadyne, focusing on Linux-based devices. The first use software for system-wide simulation,
then adopt dynamic analysis methods such as scanning and probing to discover vulnerabilities.
The simulation features of the above frameworks are based on QEMU [48]. For sensor operations that
are not easy to simulate, semi-simulation frameworks [43–46] are to guide I/O operations to physical
hardware by software agent methods when executing firmware instructions in Table 1.

Table 1. This table is a summary of the basic framework of vulnerability analysis.
√

= Yes.
Semi-simulation = The framework needs to rely on the real-world device to receive forwarded
I/O access.

Ref. Architecture Support Simulation Type
ARM MIPS x86

Avatar [43]
√

Semi-simulation
Prospect [44]

√
Semi-simulation

Surrogate [45]
√

Semi-simulation
Avatar2 [46]

√
Semi-simulation

Firmadyne [47]
√ √

Full simulation

3.2. Research on Vulnerability Discovery

With the increase in the number of vulnerabilities in IoT devices and the rise of attack trends,
security researchers pay more and more attention to the vulnerability mining of devices. This section
describes the technology of vulnerability discovery, including dynamic analysis and static analysis.
By studying traditional program security analysis, we find the dynamic analysis that involves
fuzzing [49] and taint checking [50], while the static analysis involves symbolic execution [51],
taint analysis, and data-flow analysis [50].

3.2.1. Dynamic Analysis Method

The dynamic analysis method needs tools of simulation firmware for dynamic debugging or
performs on-chip debugging on a physical device to obtain feedback information. It mainly adopts
fuzz testing to find the trigger point of the vulnerability.

Technical requirements: The ability to dynamically debug on an IoT device.
In card security research, Alimi et al. [52] used a universal algorithm to generate test samples

and fuzz mobile phone cards or bank cards. For some modern smart cards containing web servers,
Kamel et al. [53] have found some bugs based on the generated method of the HTTP protocol to
fuzz these web servers. In terms of car safety, Koscher [54] and Lee [55] can change the state of the
car by mutating the packets sent to the Controller Area Network (CAN) bus [56] to a fuzz smart
system of the car. Due to the difficulty of extracting firmware from the IoT device, IoTFuzzer [57]
captures crash information by the user side to avoid this problem. Firstly, it inserts a stub to the
interaction protocol code of the mobile application. Secondly, the authors of IoTFuzzer mutate data
that are captured from the stub and sent to the device. Finally, they judge the effect of fuzzing by
heartbeat packets and response. Because devices are difficult to debug directly, researchers have
begun to combine simulation technology to find the vulnerability. Costin et al. [58] implement the
fully automated framework that applies dynamic firmware analysis techniques to achieve automated
vulnerability discovery of Web interfaces within embedded firmware images. Recently, targets of
Srivastava et al. [59] are no longer limited to web interfaces. They present FirmFuzz [59], an automated
device-independent emulation and dynamic analysis framework for Linux-based firmware images
(camera and router). Zheng et al. [60] proposed Firm-AFL, the first high-throughput greybox fuzzer
for IoT firmware. In addition, they extended AFL [61], which is the currently popular fuzzer to
the field of IoT. For research of fuzzing, Muench et al. [62] analyzed the universality of traditional
anomaly state detection methods for the IoT device, and they implemented a system based on Avatar
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[43] and Panda [63]. In addition, they compare the throughput of a blackbox fuzzer under different
configurations, including native execution (directly sending inputs to the hardware), partial emulation
(redirecting only hardware requests to the hardware), and full emulation [60]. This is a performance
evaluation of vulnerability analysis techniques. In conclusion, the types of vulnerabilities discovered
by the aforementioned dynamic analysis techniques are diverse in Table 2. They are mainly memory
issues such as buffer overflow (OB) and null pointer dereference (NPD). There will also be some web
server vulnerabilities such as XSS, SQL injection because of the study of the web interface.

3.2.2. Static Analysis Method

The static analysis method can discover vulnerabilities in IoT devices without executing firmware.
The process provides an understanding of the program code to find bugs. Thus, it is generally
more scalable.

Technical requirements: The ability to fetch firmware of IoT devices.
The analytical static analysis process is as follows: (1) Extract the firmware. (2) Reverse binary

program in firmware. (3) Find the security problem by manual audit. In academia, researchers mainly
explore automated static analysis methods to find vulnerabilities. In Table 2, we summarize the
static analysis, including research targets, subdivided technology, and types of finding vulnerabilities.
Costin et al. [64] first analyze the firmware of embedded devices on a large scale and automatically.
They automatically decompress and process firmware and use fuzzy hashes to match weak keys in
firmware. FIE [65] based on KLEE [66] constructs the symbolic execution engine of embedded devices.
It formulates memory specification, interrupts specification and chip specification to find out the
problem of violating custom security specification in firmware. Firmalice [67] is also based on the
symbolic execution method, which finds the authentication bypass vulnerability through the input
determinism of the backdoor. For the taint analysis method, SainT [68] and DTaint [69] adopt static
methods to discover vulnerability on the basis of APP or binary code of devices, respectively.

Table 2. This table is a summary of IoT device vulnerability discovery technology. BO = Buffer Overflow.
NPD = Null Pointer Dereference. CI = Command Injection. CSRF = Cross-site Request Forgery

Category Ref. Target Technology Types of Finding Vulnerabilities

Dynamic Analysis

Alimi [52] Smart Card Fuzzing Logic Vulnerability
Kamel [53] Smart Card Fuzzing Logic Vulnerability
Kosche [54] Smart Car Fuzzing Weak Access Control
Lee [55] Smart Car Fuzzing Weak Access Control
IoTFuzzer [57] Smart Home Fuzzing BO, NPD
Costin [58] Router Fuzzing CI, XSS, CSRF, SQL Injection
FirmFuzz [59] Smart Home Fuzzing BO, NPD, CI, XSS
Firm-AFL [60] Smart Home Fuzzing BO, NPD

Static Analysis

Costin2014 [64] Binary code Fuzzy hash Weak Authentication, Backdoor
FIE [65] Binary code Symbolic execution BO
Firmalice [67] Binary code Symbolic execution Backdoor
SainT [68] APP Static Taint analysis Data Leakage
DTaint [69] Binary code Static Taint analysis BO, CI

3.3. Research on Vulnerability Detection

The dynamic and static analysis techniques from the previous section can also be applied
to detect known vulnerabilities. In large-scale detection scenarios, the dynamic analysis relies
on architecture-specific tools to execute. In addition, the static analysis method detects known
vulnerabilities by way of mining zero-day, increasing performance, and time consumption. At present,
researchers mainly adopt the following two methods: network scanning and code similarity detection.
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3.3.1. Network Scanning Method

The network scanning method detects known vulnerability by sending probe packets with
payload to services of online IoT devices. It is more versatile in the security field. With the development
of IoT security, special topics for IoT devices of network scanning emerge.

Technical requirements: The ability to know vulnerability information such as Proof of
Concept (PoC).

Cui et al. [70] scan existing embedded devices on the Internet to discover a list of devices
with weak password and other types of vulnerabilities. After 2013, search engines such as Shodan
[71], Censys [72], and Zoomeye [73] emerge, which identify and detect weak passwords, backdoor,
and known vulnerability. However, it is difficult to find most security vulnerabilities only by external
scanning. In addition, there are ethical issues with unauthorized analysis of devices on the Internet.
Thus, the vulnerability scanning is typically performed in laboratories and intranets. The advantage of
this method is that the detection from the service layer does not need to consider the structure of the
device. It is fast, effective, and suitable for large-scale testing. The current commercial vulnerability
detection systems are mainly based on this method.

3.3.2. Similarity Detection Method

Security researchers have introduced software code similarity detection methods to detect known
vulnerabilities due to a large number of unpatched known vulnerabilities in IoT devices. At this
stage, the research on similar detection is mainly aimed at the traditional software security field and
gradually supports IoT devices by across-architectures. There is no research paper specifically for IoT
firmware similarity detection. In Figure 4, the basic idea of similarity detection method is to extract
the original features from the code such as strings, an instruction sequence, basic block, syntax tree,
function call graph, and so on. Then, these features are measured similarly by the algorithm. Finally,
it is determined whether there is a vulnerability in the corresponding code fragment. This section
is mainly divided into the following two points: similarity detection on source code and similarity
detection on binary code.

Figure 4. Similarity detection architecture.

Technical requirements: The ability to fetch firmware of IoT devices.
(1) Similarity Detection on Source Code
In terms of detecting known vulnerabilities based on source code, CP-Miner [74] adopts a

token-based method that uses a lexer to generate a token sequence and search for repeated token
sequences to measure similarity. ReDeBug [75] proposed a scalable method that can combine patch
code to determine features of the vulnerability code before repaired, and it provides detecting the
unpatched code clones. However, the above code-based approach does not apply to IoT. In most cases,
security researchers can not obtain the source code of firmware.
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(2) Similarity Detection on Binary Code
In terms of detecting known vulnerabilities based on binary code, researchers mainly faced the

problem that it is difficult to detect code similarity due to different compiler code generation algorithms,
different compiler optimization options, and different instruction sets. N-Grams [76] and N-Perms
[77] are early means for vulnerability search [78]. Karim et al. [79] use binary sequences or code in
memory to match algorithms without any understanding of code semantics. Thus, these kinds of
methods are difficult to deal with the opcode reordering problem caused by different compilation
options. To improve the matching accuracy, the Tracelet-based [80] approach reconstructs the code into
an execution sequence and uses a solver to handle its constraints and data constraints. Thus, it solves
the problem of operation code disorder. Furthermore, TEDEM [81] adopts symbols to simplify binary
programs and judge the similarity of code by tree editing distance as the basic blocks. It can even find
vulnerabilities on different operating systems.

Due to some common syntactic features, features of the basic block are difficult to express
similarities between binary files. Researchers began to consider adopting the program of Control
Flow Graph (CFG) [82] to describe the behavior of the program. Therefore, the similarity comparison
can be performed by the graph. BinDiff [83] and Binslayer [84] check the similarity between the
two binaries based on the similarity measure of CFG isomorphism, but not specifically designed for
vulnerability detection. It is difficult to find cross-platform vulnerability code fragments by comparing
two completely different binaries of CFG. Egele et al. [85] proposed Blanket Execution and point out that
the research on establishing semantic similarity of binaries based on static analysis is easily affected
by compilation chain and compilation optimization level. Therefore, they suggested extracting the
dynamic run-time features of the program to counter the changes of CFG caused by the above reasons.
BinHunt [86] and iBinHunt [87] use symbolic execution and theorem proving techniques to examine
the semantic equivalence between basic blocks and find out which semantics are different.

However, the firmware of IoT devices is highly heterogeneous, including multiple architectures
such as MIPS, ARM, PPC, x86, and so on. Their opcodes, register names, and memory addressing
methods are different. Thus, the above methods are difficult to be applied to cross-architecture code
vulnerability detection on a large scale. Until the last two or three years, researchers began to study
the issues of cross-architecture similarity detection based on binary code [88–90]. Multi-MH [88] is the
first proposed binary-based method of similarity detection for cross-architecture. Above all, the binary
code is converted into intermediate code. Then, this method uses specific input to test the program and
captures the semantics of the base block based on the behavior of I/O. Finally, it adopts captured CFG
to detect vulnerabilities. However, its performance overhead is too expensive in the face of a large set of
functions. DiscovRE [89] checks whether the CFG of a set of function pairs is similar through the graph
matching algorithm and accelerates CFG matching by pre-filtering. However, its pre-filtering process
is not reliable and leads to too many under-reporting of vulnerabilities. BinGo [90] captures complete
functional semantics by introducing selective inline related library functions and user-defined functions
for cross-platform code search. However, it is not designed specifically for IoT devices. The Genius [91]
uses a traditional method of machine learning to learn high-level feature representations from CFG.
In addition, it encodes graph embedding [92] as a high-dimensional numerical feature vector. Then,
the graph matching algorithm is used to measure the similarity between the objective function and a
set of function binaries, which can effectively improve the performance and scalability. Xu et al. [93]
first adopt the deep learning method for cross-platform similarity detection on binary code, which is
graph embedding technology based on the neural network model. In cross-version code similarity
detection, αDiff [94] has taken an important step. It extracts three semantic features, including function,
inter-function, and inter-module features, to detect based on the Deep Neural Networks (DNN) model.
Gao et al. also proposed VulSeeker [95] and VulSeeker-Pro [96], those vulnerability search methods
combined with a deep learning model to improve the accuracy of vulnerability detection. These two
methods were verified to be more accurate than existing methods such as Gemini [93].
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3.4. Research on Vulnerability Mitigation

Based on vulnerability discovery and detection, mitigation is also a research issue of concern to
the industry. According to public literature of research, the main research hot-spots are automated
patch generation and access control. The former research aims to fix vulnerabilities, while later research
can limit malicious behavior.

3.4.1. Automated Patch Generation

The technology of automated patch generation in this section is not specifically targeted at the IoT
field but an extension of the traditional security field. The vulnerability repair work is usually done at
the source level by the vendor development team. After obtaining the external vulnerability report,
they eliminate the vulnerability by reproducing the vulnerability trigger condition and analyzing
the vulnerability mechanism. Automatic patch generation holds out the promise of automatically
correcting software defects without the need for developers to diagnose, understand, and correct these
defects manually [97].

Technical requirements: The ability to fetch and update IoT device firmware.
The researchers in the field of software engineering proposed to automatically generate the

patch by learning the correct code in the C language [97,98], Java language [99], and other source
code levels, which achieved the initial feasible effect. Another idea is to change the form of the
program without changing its function. GenProg [100] uses an extended form of genetic programming
to evolve a program variant that retains required functionality but is not susceptible to a given
defect. However, it can generate nonsensical patches due to the randomness of mutation operations.
Thus, Kim et al. [101] proposed the Pattern-based Automatic program Repair (PAR) to solve the above
problem. In terms of the android platform, Zhang et al. [102] proposed AdaptKpatch, which is an
adaptive kernel hotfix framework and LuaKpatch which inserts a type-safe dynamic language engine
into the kernel to execute patches. These solutions solve the problem that the patch chain of the
Android platform is too long, the fragmentation and the ecological layout are not matched, and the
subdivision repair is not timely. However, they do not consider solving the problem of the automatic
generation of hotfixes in the cross-CPU architecture. They still need to be manually written based
on the field of knowledge and experience. The Cyber Grand Challenge (CGC) [103] of DARPA
drives researchers to work on automated defense methods at the binary code level. However, these
methods mainly adopted generalized defense mechanisms such as binary code hardening [104,105],
boundary checking, and pointer patching [106].

3.4.2. Access Control Method

The access control method is to manage the IoT device’s permission for the user side or the
platform to restrict or stop the malicious behavior of attackers.

Technical requirements: Scalability for the user side or the cloud side.
Fernandes et al.’s [107] first in-depth study of IoT security focused on a platform such as

SmartThings. They found that great majority applications are overprivileged due to the capabilities
being too coarse-grained, and devices used to communicate asynchronously with applications via
events, which do not sufficiently protect events that carry sensitive information such as lock codes [107].
Many devices in the smart home are excessive permissions and ambiguous permissions management
resulting in attacks on IoT devices and disclosure of privacy. Researchers at the University of Michigan
have come up with a series of solutions to solve these problems. In 2016, they proposed Flowfence [108],
a system based on data flow to protect privacy leakage. The application is divided into two components:
(1) A set of Quarantined Modules that operate on sensitive data in sandboxes, and (2) Code that does
not operate on sensitive data but orchestrates execution by chaining Quarantined Modules together
via taint-tracked opaque handles—references to data that can only be dereferenced inside sandboxes.
Then, in 2017, they implemented ContexIoT [109] based on context information, which can help users
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implement effective access control to prevent attackers from performing dangerous operations by
identifying sensitive operation context identification and ensuring context integrity in runtime. Finally,
Tyche [110] was proposed in 2018, a risk-based permission model for smart homes to solve the problem
of excessive access permissions by building an Access Control Capabilities Lists (ACCLs) based on the
source code level. Smartauth [111] and FACT [112] are also based on the ACCLs. However, they build
the ACCLs in different ways. Smartauth builds by documents that are identified by natural language
processing (NLP) technology and APP source code, while FACT builds during the phase of device
development.

4. Discussion

In the previous section, we have investigated in-depth research on the technologies of IoT
vulnerability analysis at the present stage. In this section, firstly, we evaluate the vulnerability
analysis technology. Secondly, we point out the challenges of current research by evaluation. Finally,
we propose technological opportunities to deal with these challenges.

4.1. Evaluation

In Table 3, we evaluate from five aspects, including attack surface, technical requirement,
architecture support, operating system support, and combining with AI. During vulnerability analysis,
researchers need the support of technologies such as simulation, debugging interface, network traffic,
Firmware, and APP. These technical requirements define the methodology and purpose of the study.
For example, the IoTFuzzer [57] uses the analysis method of peripheral systems by transferring the
target to the APP. The advantage of this method is its better generality to avoid the complexity of the
architecture. Its disadvantage is that the coarse-grained crash information hinders the further analysis
of the vulnerability. The assessment of these aspects makes it easy to analyze the technical challenges
and future development trends.
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Table 3. This table is evaluation of vulnerability analysis techniques.
√

= Yes. S = Attack surface on software layer. P = Attack surface on protocol interface layer.
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Basic Framework

Avatar, 2014 [43] S
√ √ √ √ √

Prospect, 2014 [44] S
√ √ √ √

Surrogate, 2015 [45] S
√ √ √ √ √

Avatar2, 2018 [46] S
√ √ √ √ √

Firmadyne, 2016 [47] S, P1
√ √ √ √ √

Dynamic Analysis

Alimi, 2014 [52] P1
√ √

Kamel, 2013 [53] P1
√ √

Koscher, 2010 [54] S
√ √

Lee, 2015 [55] S
√ √

IoTFuzzer, 2018 [57] S, P1
√ √ √ √ √ √ √ √ √

Costin, 2016 [58] P1
√ √ √ √ √

FirmFuzz, 2019 [59] S, P1
√ √ √ √ √

FIRM-AFL, 2019 [60] S, P1
√ √ √ √ √

Static Analysis

Costin, 2014 [64] S, P1
√ √ √ √ √

FIE, 2013 [65] S
√ √

Firmalice, 2015 [67] S
√ √ √ √

SainT, 2018 [68] S, P1
√ √ √ √ √ √ √ √ √

DTaint, 2018 [69] S
√ √ √ √

Network Scanning

Cui, 2010 [70] S, P
√ √ √ √ √ √ √ √ √

Shodan [71] S, P
√ √ √ √ √ √ √ √ √

Censys, 2015 [72] S, P
√ √ √ √ √ √ √ √ √

Zoomeye [73] S, P
√ √ √ √ √ √ √ √ √
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Table 3. Cont.
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Similarit Detection

CP-Miner, 2004 [74] S
√ √ √

ReDeBug, 2012 [75] S
√ √ √

Rendezvous, 2013 [78] S
√ √ √

Karim, 2005 [79] S
√ √ √

Tracelet-based, 2014 [80] S
√ √ √

TEDEM, 2014 [81] S
√ √ √ √

BinDiff, 2005 [83] S
√ √ √ √ √ √

Binslayer, 2013 [84] S
√ √ √

Egele, 2014 [85] S
√ √ √

BinHunt, 2008 [86] S
√ √ √

iBinHunt, 2012 [87] S
√ √ √

Multi-MH, 2015 [88] S
√ √ √ √ √

DiscovRE, 2016 [89] S
√ √ √ √ √ √ √

BinGo, 2016 [90] S
√ √ √ √ √ √

Genius, 2016 [91] S
√ √ √ √ √ √

Xu, 2017 [93] S
√ √ √ √ √ √

αDiff, 2018 [94] S
√ √ √ √ √ √

VulSeeker, 2018 [95] S
√ √ √ √ √ √

VulSeeker-Pro, 2018 [95] S
√ √ √ √ √ √

Automated Patch Generation

Long, 2015 [97] S
√ √

Long, 2016 [98] S
√ √

Long, 2017 [99] S
√ √

GenProg, 2011 [100] S
√ √

Kim, 2013 [101] S
√ √

AdaptKpatch, 2016 [102] S
√ √ √

Shoshitaishvili, 2017 [105] S
√ √ √

Shoshitaishvili, 2018 [104] S
√ √ √

Xandra, 2018 [106] S
√ √ √

Access Control

Flowfence, 2016 [108] P
√ √ √ √ √ √ √ √ √

ContexIoT, 2017 [109] P
√ √ √ √ √ √ √ √ √

Tyche, 2018 [108,110] P
√ √ √ √ √ √ √ √ √

Flowfence, 2016 [108] P
√ √ √ √ √ √ √ √ √

SmartAuth, 2017 [111] P
√ √ √ √ √ √ √ √ √ √

FACT, 2017 [112] P
√ √ √ √ √ √ √ √ √
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4.2. Challenges

The above evaluation reveals the challenges of current research of vulnerability analysis on IoT
devices. As shown in Table 4, the impact on various technical fields is different. For IoT device
vulnerability analysis technology, the challenges are as follows:

Table 4. This table summarizes impact scope of challenges and opportunities. The scope of influence
includes four kinds such as basic framework of vulnerability analysis (T1), technology of vulnerability
discovery (T2), technology of vulnerability detection (T3), technology of vulnerability Mitigation (T4).√

= Challenge or opportunity affects this field of technology.

Category Name T1 T2 T3 T4

Challenges
Complexity and heterogeneity of device

√ √ √ √

Limitations of device resources
√ √ √

Closed-source measures
√ √ √ √

Opportunities
Application of AI technology

√ √ √

Dependency of third-party and open source code
√ √ √

Development of peripheral systems
√ √

(1) Complexity and Heterogeneity of Device
This issue has always been the biggest challenge of IoT device vulnerability analysis technology.

The IoT device is more heterogeneous than PC and mobile. It uses many CPU architectures such
as ARM, MIPS, x86, and different types of operating system platforms such as Linux, Windows,
and Android. It usually customizes firmware and memory usage. This makes it difficult to
directly apply the industry’s automated detection and discovery of vulnerabilities to the IoT field.
The complexity of IoT devices aggravates the difficulty of static and dynamic analysis techniques.
We find that arm-based Linux devices such as routers are selected as research targets mostly at
this stage. The research on similarity detection expands cross-architecture scenarios [88–91,93–96];
others do not challenge this issue.

(2) Limitations of device resources
IoT devices generally run a reduced operating system or even run a single program on a

microcontroller due to the lightweight requirements of products. The above reasons create the
characteristics of limited devices resources. For the program of IoT device security testing, it is
not very easy to deploy related analysis modules to the target to implement monitoring analysis on
the periphery of the running program. Security researchers can not use traditional security analysis
methods and tools. They need to restructure the analysis platform. In addition, dynamic analysis
performance is reduced because the computing power of the device hardware is limited. In recent
years, researchers have built simulation systems to address this challenge in the field of basic
framework [43–47] and vulnerability discovery [59,60,64]. However, it has not been solved well,
and this is still a long-term challenge.

(3) Closed-Source Measures
For general software, we can mine or detect source code or binary programs. For IoT device

manufacturers, these can not be applied due to their closed source strategy. Source code analysis
is no longer applicable to IoT vulnerability analysis, such as similarity detection on source code
in Section 3.3.2. They even encrypt the firmware and strengthen the authentication of the serial
debugging interface and think it is safer. For example, for the latest firmware of Dlink DIR-882(867,
878), 360 clear robots are all encrypted. Thus, vulnerability analysis based on source code, firmware,
and the debugging interface is becoming increasingly difficult. Through previous evaluations, we find
that vulnerability discovery and detection technology have avoided relying on these requirements,
such as debugging interface [59,60], and firmware [57] in the past two years. However, there are new
problems such as incomplete information.
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4.3. Opportunities

The characteristics of IoT not only bring challenges to vulnerability analysis, but also
new opportunities.

(1) Application of AI Technology
In recent years, two technological waves of AI and IoT have emerged and integrated,

promoting society into the era of AIoT (AI + IoT). The development of AI technology has also
brought new solutions and methods to the security of IoT. At present, there are related studies using
AI technology for access control [111] and similarity detection [89–91,93–96]. With the development
of IoT and AI, new vulnerability discovery, detection, and mitigation technologies inevitably appear.
When AI technology is applied to IoT devices, it is also a new opportunity of AI adversarial attack
and defense. For example, the attacker pollutes the training set of the smart speaker and induces it
to reply to a question with some negative information (abusive words). Security researchers prevent
these problems by modifying AI algorithms.

(2) The Dependency of Third-Party and Open-Source Code
IoT firmware development relies heavily on third-party and open-source code. The manufacturers

usually take new features, high performance, and low power consumption as the main targets of their
products and shorten the development cycle as much as possible to enhance market competitiveness.
Therefore, they adopt the agile development model. Many IoT manufacturers directly reuse open
source code, refer to public code implementation, cross-compile PC platform code and rely on
third-party libraries. Cui et al. [113] found that 80.4% of printer firmware contained multiple known
vulnerabilities at the time of release, and many of the latest released firmware updates still contained
third-party library vulnerabilities that were announced eight years ago. Although this has exposed
a large number of security issues, it has led to unique vulnerability discovery technologies. It is
possible to mine homology vulnerabilities through the similarity of different levels of information.
The similarity detection will also advance the application in the IoT field.

(3) Development of Peripheral Systems
IoT devices are becoming more interactive. It tends to improve to promote the development of

IoT peripheral systems. IoT devices usually interact with terminals (mobile and PC), cloud endpoint,
and other systems because of the characteristics of IoT. It not only adds new attack surfaces but also
helps the development of peripheral analysis technology to solve the problem of difficult firmware
acquisition and analysis. For example, the current research of IoTFuzzer [57] and access control
framework [108–112] all have automated analysis and protection by peripheral systems.

5. Research Directions

In the previous sections, we have introduced challenges and opportunities. We find that IoT
vulnerability discovery, detection, and mitigation technologies continue the trajectory of traditional
security research but also have their different research directions.

• AI-based vulnerability discovery and detection technology. Whether function or security,
IoT and AI technologies are rapidly converging. The current AI technology is successfully
used in vulnerability detection. As research progresses, it will expand to other vulnerability
analysis techniques. For example, Generative Adversarial Networks (GANs) [114] have been
applied in abnormal detection of IoT system behavior [115]. In the future, GANs may have
a potential application in IoT vulnerability discovery because they may learn different attack
scenarios to generate samples similar to a zero-day attack and provide algorithms with a set of
samples beyond the existing attacks [16].

• Large-scale vulnerability analysis techniques. Complexity and heterogeneity of IoT devices
hinder automation and large-scale analysis research in Section 4.2. However, this demand has
been urgent in the IoT security industry. Security researchers need a cross-platform approach to
overcome this problem, which is a long-term research direction.
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• Automated vulnerability exploiting. To exploit the vulnerability in IoT devices and protect the
device from intrusion, we need to generate PoC in an automated way. It helps to understand the
hazards and causes of vulnerabilities better. With the development of the IoT field, the automation
attack and defense will also become a hotspot.

• Vulnerability analysis based on a peripheral system. Through the above challenges, we found
that it is aggravatingly difficult to analyze devices by static and dynamic methods directly.
IoT devices are becoming more interactive. Not only will there be more and more vulnerabilities
in combination with peripheral systems, but also study on peripheral system analysis methods
will increase.

• Automatic generation patch of multi-platform on binary code. For some IoT vendors’
closed-source and security inaction, device firmware can not be patched in time. To this
end, we need an automated repair method for cross-platform binary code vulnerabilities.
The automated patch generation on the binary code level requires fully understanding the
formation mechanism and the elimination condition. There will be thousands of security
vulnerability templates if we rely entirely on expert domain knowledge. Thus, it is difficult
to achieve a scaled and feasible solution. At the same time, the variety of operating systems and
hardware architecture brings technical challenges. It is a long-term goal of the whole security
field to solve the problem of the automatic generation of multi-platform binary code patches.

6. Conclusions

With the rapid development of the IoT, users’ security and privacy protection bring significant
impact and challenge. Although the research on the security of IoT devices has gradually risen,
it is still in the start-up stage in the information security field. Thus, a comprehensive summary
of current research is needed to guide the development of IoT security. This paper analyzes IoT
architecture and attack surfaces from the consumer-level and industry-level. It reveals the background
of current research. We first refined the classification from four aspects: analysis tool, discovering,
detecting, and mitigating vulnerability. Based on the above aspects, we review the technologies of
vulnerability analysis. Moreover, we summarize targets, features, and research directions. Then,
we evaluate vulnerability analysis techniques and find that the current research faces challenges,
including complexity and heterogeneity of devices, limitations of device resources, and closed-source
measures for a long time. Opportunities also accompany by challenges. The technologies about AI and
peripheral system analysis will appear widely in the field of IoT security. In the future, there will be
more and more technologies combined with new fields to implement automated vulnerability analysis
on large-scale and cross-architecture.
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