aDiff: Cross-Version Binary Code Similarity Detection with DNN

Bingchang Liu*
liubingchang@iie.ac.cn
Institute of Information Engineering,
Chinese Academy of Sciences

Wenchao Li*
Institute of Information Engineering,
Chinese Academy of Sciences

Wei Huo" '
huowei@iie.ac.cn
Institute of Information Engineering,
Chinese Academy of Sciences

Feng Li"
Institute of Information Engineering,
Chinese Academy of Sciences

Chao Zhang
chaoz@tsinghua.edu.cn
Institute for Network Science and
Cyberspace, Tsinghua University

Aihua Piao
Institute of Information Engineering,
Chinese Academy of Sciences

Wei Zou”
zouwei@iie.ac.cn
Institute of Information Engineering,
Chinese Academy of Sciences

ABSTRACT

Binary code similarity detection (BCSD) has many applications,
including patch analysis, plagiarism detection, malware detection,
and vulnerability search etc. Existing solutions usually perform
comparisons over specific syntactic features extracted from binary
code, based on expert knowledge. They have either high perfor-
mance overheads or low detection accuracy. Moreover, few solu-
tions are suitable for detecting similarities between cross-version
binaries, which may not only diverge in syntactic structures but
also diverge slightly in semantics.

In this paper, we propose a solution aDiff, employing three
semantic features, to address the cross-version BCSD challenge.
It first extracts the intra-function feature of each binary function
using a deep neural network (DNN). The DNN works directly on
raw bytes of each function, rather than features (e.g., syntactic
structures) provided by experts. aDiff further analyzes the function
call graph of each binary, which are relatively stable in cross-version
binaries, and extracts the inter-function and inter-module features.
Then, a distance is computed based on these three features and
used for BCSD. We have implemented a prototype of aDiff, and
evaluated it on a dataset with about 2.5 million samples. The result
shows that aDiff outperforms state-of-the-art static solutions by
over 10 percentages on average in different BCSD settings.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; « Com-
puting methodologies — Machine learning;

*Also with: School of Cyber Security, University of Chinese Academy of Sciences.
T corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’18, September 3-7, 2018, Montpellier, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09...$15.00
https://doi.org/10.1145/3238147.3238199

667

KEYWORDS
Code Similarity Detection, DNN

ACM Reference Format:

Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao,
and Wei Zou. 2018. aDiff: Cross-Version Binary Code Similarity Detec-
tion with DNN . In Proceedings of the 2018 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18), September 3—
7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3238147.3238199

1 INTRODUCTION

Given two binary functions, the problem of evaluating whether
they are similar is called binary code similarity detection (BCSD).
It plays an important role in many applications, including code
plagiarism detection [32, 33, 43] and malware family and lineage
analysis [2, 26, 28]. It could also be used to analyze 1-day (i.e.,
patched) vulnerabilities [5], or summarize vulnerability patterns
[53], when applying BCSD on pre-patch and post-patch binaries.
Moreover, it could even be used in cross-architecture bug search-
ing [16, 17, 52], when applying BCSD on a known bug and target
applications.

However, BCSD faces several challenges. First, different compiler
optimizations yield cross-optimization binaries. Second, compilers
with different algorithms (e.g., register allocation) generate cross-
compiler binaries. Third, the source code compiled on different plat-
forms (e.g., with different instruction sets) yields cross-architecture
binaries. These binaries are semantic-equivalent, but have different
syntactic structures. On the other hand, the source code itself may
evolve over time (e.g., being patched), yielding cross-version binaries.
These binaries by nature are similar, because they have a same root.
But they have different syntactic structures and slightly different
semantics. Existing solutions could address these BCSD challenges
to some extent, but perform poorly in cross-version binaries.

State-of-the-art BCSD solutions heavily rely on a specific syn-
tactic feature of binary code, i.e., control flow graphs (CFGs) of
functions. The most widely used tool BinDiff [55] utilizes graph-
isomorphism (GI) theory [14, 18] to compare functions’ CFGs. How-
ever, GI algorithms are time consuming and lack polynomial time

https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199

ASE ’18, September 3-7, 2018, Montpellier, France

solutions. Moreover, Gl is vulnerable to (even minor) CFG changes,
and thus has a low accuracy. BinHunt [19] and iBinHunt [34] ex-
tend GI with symbolic execution and taint analysis to address these
challenges, but still have low accuracy and high overheads.

BinGo [6], Esh [12] and CABS [38] provide more resilience to
CFG changes, by computing the similarities of CFG fragments and
composing the overall CFG similarity. DiscovRE [16] provides better
performance, by employing a filter on CFGs to reduce the number
of GI comparisons. It extracts some numeric features from CFGs,
e.g., counts of instructions or basic blocks (BBs), and use the kNN
algorithm to pre-filter similar CFGs. Genius [17] extracts similar
numeric attributes from BBs, and use them to augment CFG nodes
and get Attributed CFGs (ACFGs), to support cross-architecture
BCSD. Gemini [52] uses an end-to-end neural network to embed
ACFGs, providing better performance and accuracy.

These solutions all rely on the syntactic feature, i.e., CFGs. These
features are derived from expert knowledge, which could introduce
bias sometimes. For example, CFGs could change dramatically even
if there is none or minor code changes, and cause noticeable devia-
tions in the BCSD results. The first research question addressed in
this paper is: RQ1: How to extract features from binary code with as
little human bias as possible?

Few solutions consider the semantics of the binary code, except
BinGo [6] and Esh [12]. These two use theorem proving to check
semantic equivalence of CFG fragments, and thus are computation-
ally expensive. On the other hand, the semantics of cross-version
binaries may change slightly, e.g., due to patching. So, strict seman-
tic equivalence comparisons are not suitable neither. The second
research question addressed in this paper is: RQ2: How to efficiently
utilize semantic features to improve the accuracy of BCSD?

Cross-version BCSD is demanded for two decades, e.g., in patch
analysis [5] and knowledge transfer [50]. It is also one of the most
attractive functionalities provided by the popular tool BinDiff [55].
However, this problem is far from being solved. For example, the
average accuracy of BinDiff is less than 0.5 when comparing coRE-
UTILS 5.0 with COREUTILS 8.29 that consist of hundreds of binaries.
But researchers have paid few attentions to this specific topic. The
third research question addressed in this paper is: RQ3: How to build
a solution fit for cross-version BCSD?

In this paper, we propose a solution aDiff to address the afore-
mentioned questions. In short, it extracts proper semantic features
from binaries, and uses them to compute similarity scores to per-
form BCSD. To fit for cross-version BCSD, each binary function is
characterized as three semantic features, i.e., the function code’s (i.e.,
intra-function) features, function invocation (i.e., inter-function)
features, and module interactions (i.e., inter-module) features.

First, to characterize a function’s intra-function feature, we do
not use its CFG or other attributes derived from expert knowledge.
We notice that, the raw bytes contain all semantic information
of the function, and neural networks could automatically retrieve
unbiased features from them. Thus, we propose a neural network to
extract features from the function’s raw bytes, inspired by previous
works [45]. More specifically, we represent the raw bytes as a matrix,
and use convolutional neural network (CNN) to convert it into
an embedding (i.e. a vector). Further, in order to ensure similar
functions’ embeddings are close to each other, we embed this CNN

668

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou

into a Siamese network, i.e., a popular solution used in fine-grained
visual similarity recognition [3, 4, 44, 47].

Second, we notice that similar functions have similar call graphs
but not the opposite. So we analyze each function’s call graph
to extract its inter-function feature. Ideally, the whole call graph
should be considered. But in our solution, we extract only the in-
degree and out-degree of a function node in the call graph as the
function’s feature, for performance reason.

Third, we also notice that similar functions have similar imported
functions (even in different architectures), but not the opposite. So
we analyze each function’s imported function set and use it as inter-
module feature. A specific algorithm (Section 3.4) is proposed to
embed this set into a vector, to support distance computation.

So, given any two binary functions, we could extract their intra-
function, inter-function and inter-module features. Then, we could
compute their distances in terms of each feature respectively. Fi-
nally, we will merge these three distances to measure the overall
similarity of these two functions.

We have implemented a prototype of our solution aDiff, and
evaluated it on a custom dataset consisting of about 2.5 millions
pairs of cross-version functions, which are collected from public
repositories. The results showed that, aDiff outperforms BinDiff by
11 percentage on average, up to 52% for some binary pairs. With
only the intra-function feature, aDiff outperforms BinDiff by 6
percentage on average, up to 43% for some binary pairs.

More importantly, although our training data is composed of
cross-version binaries, our model is also good for cross-compiler
and cross-architecture binary code similarity detection, as well as in
a specific application, i.e., vulnerability search. The results showed
that aDiff in general outperforms state-of-the-art solutions.

Overall, we made the following contributions:

(1) We proposed a neural network solution to extract intra-
function semantic features from raw bytes of binary func-
tions, without interference of expert knowledge. Together
with two other proposed semantic features, i.e., inter-function
and inter-module features, we built an end-to-end system
aDiff able to perform cross-version BCSD.

We built a labelled dataset for deep learning, which con-
tains 66,823 pairs of binaries and about 2.5 million pairs of
functions. Researchers can freely use this dataset, to design
other neural network models and solve other problems.

We developed a prototype aDiff and evaluated it on this
dataset. The results showed that it outperforms state-of-the-
art solutions, in all of cross-compiler, cross-architecture and
cross-version BCSD settings.

—
S
~

—
[SY)
=

2 PROBLEM DEFINITION

In this section, we will introduce the definition of the cross-
version BCSD (binary code similarity detection) problem.

2.1 Notation and Assumption

We assume all binaries are compiled from source code written in
high-level languages, not assembled from hand-written assembly
or generated by packers, which aim at obfuscating the binaries.

Uhttps://twelveand0.github.io/ AlphaDiff- ASE2018- Appendix

https://twelveand0.github.io/AlphaDiff-ASE2018-Appendix

aDiff: Cross-Version Binary Code Similarity Detection with DNN

To be practical, we also assume the debug symbols in binaries are
stripped, which makes binary analysis more challenging.

A binary B; consists of a set of functions fi1, fi2, .., fin. Binary
function identification, which is out of the scope of this paper,
could be handled well by existing binary disassembly solutions. We
hereby assume each binary’s functions could be identified correctly,
i.e., all bytes of each function f;; in a binary B; can be determined.

A core task of BCSD is to find each function’s matching counter-
part. Two binary functions are considered as matching, if they are
compiled from functions with the same name (including namespace
and class etc.) and used in similar contexts. It is worth noting that,
identical functions (i.e., with same raw bytes) are matching, but
matching functions could be non-identical.

2.2 Cross-version BCSD Problem

The cross-version BCSD problem focuses on analyzing two bina-
ries By and By compiled from a same source code project, which
could evolve over time. It is related to the following tasks:

(1) function matching: for each function fi; in a binary By, if
exist, find its match f5; in the other binary Bj.

(2) similarity score: for each pair of functions fi; and fj, com-
pute a semantic similarity score ranging from 0 to 1 between
them, indicating how likely they are similar to each other.

(3) difference identification: for each matching pair of functions
f1i and f3}, identify the exact differences in their code bytes,
if their similarity score is less than 1 (i.e., non-identical).

In this paper, we only focus on the first 2 tasks.

2.3 Variant BCSD Problems

In this paper, we aim to solve the challenges in the cross-version
BCSD problem, which is more challenging than other BCSD prob-
lems. As the evaluation results showed, our solution could be used
directly for the following variant settings and received good results.

(1) Cross-optimization BCSD: It aims at analyzing two binaries
compiled from a same copy of code, using a same compiler
but with different compilation optimizations.

(2) Cross-compiler BCSD: 1t aims at analyzing two binaries com-
piled from a same copy of code, using different compilers
(e.g., different vendors.).

(3) Cross-architecture BCSD: It aims at analyzing two binaries
compiled from a same copy of code, targeting different ar-
chitectures (e.g., with different instruction sets).

2.4 Evaluation Metric

The goal of BCSD solutions is identifying matching functions
accurately. We thus evaluate whether the matching function is in
the top K matching candidates reported by a given BCSD, namely
Recall @K, similar to related works [29, 47],

Given two binaries By = fi1, fi2, ..., fin and B2 = fo1, f22, ..., fam.
for simplicity, we assume they have T pairs of matching functions,
ie., (fi1, fo1), (fiz, f22), ..., and (fiT, for) respectively. The rest of
functions do not match.

For any function fj; in By, the BCSD solution could sort func-
tions in the other binary By, based on their similarities with fj;.
We denote the top K similar functions as topK(fi;), and denote

669

ASE ’18, September 3-7, 2018, Montpellier, France

hit@K(f1i) as whether fi;’s matching function exists in topK(f1;).

1, i € topK(f1i di<T
hit@K (fun) = { Jor € top(fu) and o)
0, otherwise
The evaluation metric of BCSD is thus defined as follows.
T
3. hit@K(fiy)
Recall @K(B1, B2) = =2 @)

T
3 APPROACH

In this section, we present the key idea of our solution to the
problem of cross-version binary code similarity detection.

3.1 Overview

Traditional solutions based on syntactic attributes are inadequate
for cross-version BCSD. The similarity of two cross-version binary
functions should be estimated by their semantics, i.e., their raw
bytes, their relationships with other functions defined in the same
binaries, and their relationships to imported functions defined in
external modules. For simplicity, we name these features as intra-
function, inter-function and inter-module features respectively.

As shown in Figure 1, our solution aDiff first extracts these
features from two binary functions, then calculates the distances
between each pair of features, and finally evaluates an overall simi-
larity score based on these three distances. The final score indicates
the similarity between the two functions.

Unlike traditional solutions which use CFG and other syntactic
attributes as features, we apply a deep neural network to directly
extract intra-function features from each function’s raw bytes. An
embedding is generated by this neural network, to represent the
binary function’s semantic feature.

Furthermore, we use the call graph (CG) to characterize the
inter-function semantic feature, and use the imported function
invocation relationship to characterize the inter-module semantic
feature. These two features could be extracted from binaries with
traditional lightweight program analysis.

3.2 Intra-function Semantic Feature

Inspired by previous binary analysis solutions [45], we also uti-
lize a neural network to extract intra-function semantic features
from the raw bytes of binary functions. After many trials (e.g.,
Conv1D, LSTM and convolutional LSTM), we find out the convolu-
tional neural network (CNN) is the best fit.

In our solution, the CNN takes the raw bytes of a function I
as input, and maps it to an embedding f(Iy), i.e., a vector in a
d-dimensional Euclidean space RY. Then we could calculate the
distance between any two functions using their embeddings.

In order to detect similarity, we have to train the model to satisfy
the following requirement. RQ: The distance between (embeddings
of) two similar functions should be small, while the distance between
(embeddings of) two dissimilar functions should be large.

Inspired by deep metric learning [3, 44, 47], we also embed two
identical CNNs into a Siamese architecture [4], to comply with
the requirement RQ and train the CNN’s parameters. Unlike the
recent work Gemini [52], which generates embeddings with DNN

ASE ’18, September 3-7, 2018, Montpellier, France

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou

CNN tuned
with Siamese

intra-func
feature 1
intra-func
feature 2

Euclid
Distance

|

raw bytes
of input func

Pre-process

Binary 1 I

y

intra-func
distance

inter-func
feature 1
inter-func
feature 2

in/out degree
in call graph
of input func

func/
(bin1 N bin2)

Euclid
Distance

imported functions of
input func and binary

y

inter-func
distance

y

inter-mod
distance

inter-mod
feature 1
inter-mod
feature 2

<
<

Function Similarity Score

Figure 1: Overview of the cross-version binary code similarity detection solution aDiff.

based on some engineered syntactic features, our solution does not
require expert knowledge and is suitable for cross-version BCSD.

3.2.1 Embedding Functions with CNN. The convolutional neural
network (CNN) is a specific kind of neural network for processing
data that has a known, grid-like topology [20, 31]. It has achieved
great success in many applications, e.g., AlexNet [30].

However, classical CNNs are specifically designed for image
classification, requiring inputs similar to RGB images, which have
atleast 3 channels. This is not suitable for our problem scope and our
input format. After many trials, we design a new CNN as follows.

Network structure. The CNN that we propose consists of 8 convo-
lutional layers, 8 batch normalization layers, 4 max pooling layers
and 2 full-connected layers. The whole model uses rectified linear
units, i.e. ReLU [10], as the non-linear activation function. In total,
there are more than 1.6 million parameters in this network 2.

Network I/O. This CNN takes a 100x100x1 tensor T as input,
and outputs a 64-dimensional vector (i.e., embedding). We fill the
raw bytes of a function into T byte by byte. If the function has less
than 10,000 bytes, we will fill the tensor T with zero byte paddings.
Otherwise, we will discard the redundant bytes of this function.

It is worth noting that, few functions (e.g., less than 0.01% in our
dataset) have more than 10,000 bytes. Moreover, if two functions’
first 10,000 bytes are similar, they are likely similar too. So, it is
reasonable to simply discard redundant bytes of the function.

Data augmentation. In image classification applications, data
augmentation is a popular measure to improve datasets for CNN
training. Unlike images pixels that are tolerant to minor modifica-
tions, function bytes are vulnerable to changes, since they will alter
the function semantics. So during the training of our model, we do
not apply any data augmentation measures.

Overfitting issue. We also investigated the measures used in
AlexNet etc., i.e., layer stacking style and solutions, to avoid model
overfitting. In particular, we adopt batch normalization [27] to ad-
dress the overfitting issue.

3.2.2 Learning Parameters Using Siamese Network. In order to train
the parameters of this CNN embedding network, we use the Siamese
architecture [4]. As shown in Figure 2, the Siamese architecture
uses two identical CNN embedding networks. Each CNN takes one
function as input, namely I; and I;, and outputs the corresponding

Details could be found at: https://twelveand0.github.io/ AlphaDiff- ASE2018- Appendix

670

Figure 2: Siamese network illustration.

embeddings, namely f(Ig;0) and f(I;; 0) respectively, where f
represents the network structure and 6 represents the network
parameters.

In addition to the input pair (I4, I;), the Siamese architecture
also accepts an indicator input y. This input y indicates whether
the two functions Iy and I; are similar or not. If they are similar,
y = 1, otherwise y = 0.

The goal of the training is to find the best parameter 6, to satisfy
the aforementioned requirement RQ, i.e., the distance between
functions Iy and I; is small if they are similar otherwise large.
Formally, the distance of two functions’ intra-function features is
defined as follows.

D1 Ir) = || f(Iq:0) — f(L; 0)| (3)

To achieve this goal, we evaluate a contrastive loss function [22]
of this Siamese network as follows.
L(0) = Average{y - D1(Iq,It)+
Ug-Ir) (4)
(1 -y) - max(0,m — D1(Iy, I;))}

where m is a pre-defined hyper-parameter, i.e., the minimal margin
distance that dissimilar functions are expected to have.

We can infer that, if this loss function gets a minimal value,
D1(Ig,I;) is close to 0 when y = 1, and max(0, m — D1(Ig, 1)) is
close to 0 when y = 0. In other words, each function will be close to
similar ones and far from dissimilar ones, in the embedding space.
So, the aforementioned requirement RQ is satisfied.

The objective of the training thus becomes to find the parameter
0 to minimize the Siamese network’s loss function, i.e.

©)

This objective function can be solved using Stochastic Gradient
Descent (SGD) with standard back propagation algorithms [31, 41].

arg méi'n L(6)

https://twelveand0.github.io/AlphaDiff-ASE2018-Appendix

aDiff: Cross-Version Binary Code Similarity Detection with DNN

3.2.3 Negative Training Samples. 1t is crucial to build a set of posi-
tive samples (i.e., pairs of similar functions) and negative samples
(i.e., pairs of dissimilar functions), in order to get desirable conver-
gence in the aforementioned CNN and Siamese network.

We have collected about 2.5 million positive samples from pub-
lic repositories. We thus need a way to either collect or generate
sufficient negative samples for training. Similar to [37, 44, 47], we
also generate negative samples in each mini-batch during training,
based on the positive samples.

More specifically, for each positive sample (I4, I)) in a mini-batch,
we will generate two semi-hard [44] negative samples, namely
(Ig, In1) and (Ip, Inz). Take the function I as an example, we will
look for function I, that satisfies the following equation®.

0 < D1(Ig,In) < m (6)

We randomly select one function I, that satisfies this constraint
as the negative function. But we will skip the hardest negative
function (i.e. arg min D1(Ig, I,)), because such samples can easily
lead the model to bad local minima during training.

In order to get sufficient different negative samples, we will
shuffle the mini-batch of positive samples in each epoch during
training. More specifically, in each epoch, we first randomly sort
the binary file pairs, then randomly sort the positive function pairs
between each binary file pair. The randomly sorted positive samples
(function pairs) will then be divided into mini-batches, and new
negative samples could be generated from these new mini-batches.

3.3 Inter-function Semantic Feature

Functions do not work solely, i.e., they will call other functions
or be called by others. The interactive relationship with other func-
tions in the same binary (including themselves) is an important
semantic feature, i.e. inter-function feature. This feature can be rep-
resented as the function call graph. We notice that similar functions
have similar call graphs.

Ideally, the whole call graph should be considered. For example,
SMIT [26] uses the call graph matching to detect similarity between
malware samples. Although they propose an efficient Graph Edit
Distance algorithm, the computation cost is still too high to deploy.

In our solution, we extract only the in-degree and out-degree of
anode (i.e., function) in the call graph as its inter-function feature.
More specifically, for each function Ig, we embed its inter-function
feature as a 2-dimensional vector as follows.

9(Iq) = (i”(Iq): Out(Iq)) (7)
where in(I) and out(Iy) are the in-degree and out-degree of the

function Iy in the call graph respectively. Formally, the (Euclidean)
distance of two functions’ inter-function features is defined as:

D2(Ig. 1) = ||g(Iq) — g(Ib)|| ®)

3.4 Inter-module Semantic Feature

A function I also invokes a set of imported functions, denoted
as imp(lq), which are defined in external modules (libraries). We
notice that similar functions invoke similar imported functions
but not the opposite. Moreover, the set imp(I) is relatively stable
even if Iy changes across versions, due to the modular development

3This is different from FaceNet [44] and VGGFace [37].

671

ASE ’18, September 3-7, 2018, Montpellier, France

process. As a result, the imported function set is also an important
semantic feature, i.e. inter-module feature.

For consistency, we also convert the inter-module feature, i.e.,
the imported function set, into a vector for distance computation.
Therefore, we use the following element-testing formula to embed
a set into the superset’s space.

h(set, superset) =< x1,X2, ..., XN >

©)

where N is the size of the superset, and x; = 1 if the i-th element
of superset is in set; otherwise 0.

For two functions Iq and I, assuming their binaries are By and
By, we will get their imported function set imp(By) and imp(B;)
too. Then we take imp(Bgq) N imp(B;) as the superset, and use the
aforementioned formula to encode each inter-module feature, then
compute their distance as follows.

D3(Ig. Ir) = |(imp(y). imp(Bq) O imp(By))~
h(imp(Iy). imp(Bq) 1 imp(By))|

It is worth noting that, imp(Bg) is a superset of imp(I4), and
imp(B;) is a superset of imp(I;). Moreover, although symbols (e.g.,
function names) may be stripped from binaries, the names of im-
ported functions will always be kept so that the linker could link
modules together. As a result, it is easy to extract the set of imported
functions for a binary or a function.

(10)

3.5 Overall Similarity Computation

Given any two functions I and I;, we could thus compute their
intra-function distance (D1), inter-function distance (D2) and inter-
module distance (D3), following Equation 3, Equation 8 and Equa-
tion 10 respectively.

As aforementioned, the imported function set of a function is
usually stable, so the inter-module distance D3 between similar
functions in general is small. Moreover, the intra-function distance
D1 between similar functions is also small, usually smaller than
the minimal margin of dissimilar functions, i.e., the parameter m in
Equation 4. But, similar functions in cross-version binaries could
have different call graphs, especially different in-degree and out-
degree, resulting a relatively large inter-function distance D2.

So, we eventually compute an overall distance to represent the
overall similarity of these two functions as follows.

D(Ig,I) = D1(Ig, I) + (1 - P20 1)y 4 D3(15, 1) (11)

where & is a pre-defined hyper-parameter in the range (0, 1), used
for suppressing the effect of D2.

For any function I; in question, we will compute the overall dis-
tance D with each target function, and then sort all target functions
by the distance. The closest target functions (i.e., topK defined in
Section 2.4) are more likely similar to I.

4 EVALUATION

4.1 Implementation

We have implemented a prototype of aDiff. It consists of three
major components: preprocessor, feature generator, and neural net-
work model. The preprocessor is implemented as a plug-in of the
binary analysis tool IDA Pro 6.8 [24]. From each function in a bi-
nary, three types of information are extracted, i.e. its raw bytes, its

ASE ’18, September 3-7, 2018, Montpellier, France

Table 1: Sources of the dataset

data-src projects/ | versioned | cross-version | cross-version

packages | proj/pkg | binary pairs | function pairs
GitHub repo 31 9,419 8,510 166,541
Debian repo 895 1,842 58,313 2,323,252
TOTAL 926 11,261 66,823 2,489,793
for training - - 44,526 1,665,025
for validation - - 11,150 417,158
for testing - - 11,147 407,610

in/out-degree in the call graph and its imported function set. These
raw information are then encoded into embeddings, as discussed in
Section 3. Specifically, the raw bytes are converted into embeddings,
using a special neural network. This network model is implemented
in TensorFlow-1.3 [1] and Keras-2.0 [8].

4.2 Evaluation Setup

Our experiments are conducted on a server equipped with two
Intel Xeon E5-2650v4 CPUs (24 cores in total) running at 2.20 GHz,
128 GB memory, 12TB hard drives, and 4 NVIDIA Tesla P100 PCIE-
16G GPU cards. During both training and evaluation, only 1 GPU
card was used.

4.2.1 Dataset. A dataset is needed to train neural network model
and evaluate its effectiveness. We collected a set of 2,489,793 positive
samples (i.e., pairs of matching functions) from 66,823 pairs of cross-
version binaries in x86 Linux platform. As shown in Table 1, the
dataset has two sources.

The first source is the GitHub repository, where we collected
source code from 31 projects with 9,419 releases. Each release is then
compiled with the compiler GCC-5. 4 with the default optimization
options. We placed each project’s two successive releases of binaries
into one pair, and got 8,510 pairs in total.

The second source is Debian package repository, where we di-
rectly collected binaries from .deb packages. We have collected
895 packages with 1,842 versions, from the Ubuntu 12.04, 14.04 and
16.04 platform. Each package may contain more than one binaries.
We grouped each version of binary with its closest version as a pair,
and got 58,313 pairs in total.

For each pair of cross-version binaries, we then retrieved pairs of
matching functions, which have a same name but are not identical.
To increase the diversity, we also extracted some pairs of functions
that are identical in cross-version binaries. Finally, in total we have
2,489,793 pairs of cross-version matching functions, from 66,823
pairs of cross-version binaries. Among them, about 1.52 percents
of pairs of cross-version functions are identical. It is worth noting
that, BinDiff reports that 29.4 percent of pairs are identical, due to
the inaccuracy introduced in its GI-based algorithm.

Ground Truth. As aforementioned, to get the ground truth of
matching functions, we utilized function names and thus relied on
debug symbols optionally shipped with binaries. For binaries that
are compiled from GitHub code, the compilation option -g is added
when building. For binaries from Debina package repository, we
only collected packages with symbolic files (e.g., .ddeb packages).
After collecting the ground truth, we stripped all debug symbols

672

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou

from binaries, and evaluate our tool aDiff and other tools on the
stripped binaries only.

4.2.2 Dataset Split. Similar to other works, we also split the dataset
into three disjoint subsets for training, validation and testing, in
order to evaluate the generalization capability of the trained model
on unseen binaries. Roughly, we set the number of positive samples
(i.e., pairs of matching functions) in these three subsets proportion
to 4:1:1. Moreover, we ensure that matching pairs from one pair of
binaries will be placed in one subset. Table 1 shows the size of each
subset at the bottom.

4.2.3 Neural Network Training. This dataset is used to train the
neural network model for intra-function feature extraction. In the
CNN model, we use the RMSProp optimizer [25], set the learning
rate to 0.001, and set the forgetting factor to 0.9. In the Siamese
network (Eq.4), we set the margin m, i.e., the minimal distance
between dissimilar functions, to 1.0. Furthermore, we set the ¢ in
the overall similarity score formula (e.g., Equation 11) to 0.75. For
each mini-batch, 100 positive samples are selected and 200 semi-
hard negative samples are generated online. The Siamese network
is trained for 200 epochs (3.075 h/epoch), to tune the parameters in
the CNN embedding network.

4.3 Hyper-parameters in the Siamese Network

In addition, the DNN involves several other hyper-parameters
and design decisions, e.g., the shape of input tensor, the embedding
size, the negative sample mining method and the network archi-
tecture etc. The choices of these parameters and design decisions
could also affect the effectiveness of the model.

We have conducted a set of experiments to select proper param-
eters and design decisions. Due to the time and resource limitation,
we train each model setting with 25% samples of the training set
for 30 epochs. We evaluate each model’s performance on a subset
of the testing set, in which the number of positive samples of each
binary pair is no less than 100.

4.3.1 Input Shape and Convolutional Layer Type. We have evalu-
ated the performance of the network in different input shape and
convolutional layer, as shown in Figure 3a. We can see that, the
model’s performance is affected by the shape of input tensor. Be-
sides, we also evaluate the performance of 1D-CNN and find it
doesn’t perform better than 2D-CNN with 100x100x1 input tensor.
Section 5 will discuss more about it.

4.3.2 Embedding Size. We have evaluated the performance of the
network in different embedding size, i.e., the dimension of the
CNN’s output vector, as shown in Figure 3b. It shows that if the
embedding size is set to 64, the model in general performs best and
get the highest average Recall@1 accuracy. Thus, in our model, we
set the embedding size to 64.

4.3.3 Hard Negative Sample Mining Method. We evaluate the per-
formance of our hard negative samples mining method and compare
it with another two typical mining methods, i.e., FaceNet [44] and
VGGNet [37]. Further, we evaluate the performance of network
in different count of hard negative samples corresponding to each
positive sample. In Figure 3¢, FaceNet-3tuple means one semi-hard
negative sample is mined by FaceNet method [44] for each positive

aDiff: Cross-Version Binary Code Similarity Detection with DNN

—
®©
©
o
)
o
(5
o>
o : :
F3) O.75 /- —— conv2d-100x100x1[]
= — conv2d-400x25x1
‘ : —— conv1ld-10000x1
0.70 L . ’ y
(0] 5 10 15 20 25 30

epoch

(a) Average Recall@1 in different input shape and convolutional

layer.

0.90 T T T T T
—
@ 0.85
C 080 |7 uf g N
o 0.75 aDiff-4tuple |
(] aDiff?-4tuple
g 0.70 — VGGNet-4tuple H
E . . . —— FaceNet-4tuple
é 0.65 |L-...... — VGGNet-3tuple H

: : : —— FaceNet-3tuple
0_60 | | | I I
o 5 10 15 20 25 30
epoch

(c) Average Recall@1 in different negative sample mining methods.

ASE ’18, September 3-7, 2018, Montpellier, France

0.85

0.80

Average Recall@1

0.85
—
@ 080T~ N i
©
So7sbf . LT N~/ N\ i
[='
() H
% 070 H e et et Triplet_loss
qL) —— Tetrad_loss
<>(0.65 P /7 oot —— Siamese_3tuple[]
: . . —— Siamese_4tuple
0.60 i i i T T
(o] 5 10 15 20 25 30

epoch

(d) Average Recall@1 in different network architecture.

Figure 3: Evaluation of hyper-parameters and design decisions.

Table 2: The recall accuracy of ¢Diff-1f and aDiff-3f on the
testing set of 9,308 pairs of binaries.

Whole set Big subset
aDiff-1f | oDiff-3f | aDiff-1f | aDiff-3f
Avg. Recall@1 0.953 0.955 0.885 0.900
Avg. Recall@5 0.996 0.997 0.968 0.974
Avg. MRR 0.973 0.975 0.922 0.933

sample, while FaceNet-4tuple means two semi-hard negative sam-
ples, corresponding to the left and the right of each positive sample
(i.e. a 2-tuple).

Besides, we have also tried a more gentle mining criterion*
as described by the line aDi f f2-4tuple in Figure 3c. However, it
doesn’t performs better than ours. We can see that, our method
performs better than another two methods. And 4-tuple (tetrad)
mining method performs better than 3-tuple (triplet) mining.

4.3.4 Network Architecture. We have also evaluated the perfor-
mance of different network architectures, as shown in Figure 3d.
We evaluated the Triplet architecure of FaceNet [44] and Tetrad
architecture of [47]. We also evaluated Siamese architecture with
triplet mining and tetrad mining method. We can see that, Siamese
architecture with tetrad mining method performs best.

4D1(Iq. Ip) < D1(Ig, Int) < m

673

4.4 Accuracy in Cross-version BCSD

In this section, we evaluated the accuracy of aDiff, with only
the intra-function feature enabled (denoted as aDiff-1f) and with
all three features enabled (denoted as aDiff-3f or aDiff), using the
metric Recall@K. The task is essentially a ranking task and every
query has only one correct answer (matched function). So we thus
also evaluated the MRR (Mean Reciprocal Rank) [39].

4.4.1 Evaluation on Testing Set. We first evaluated aDiff-1f and
aDiff-3f on the testing dataset consisting of 9,308 pairs of cross-
version binaries, and calculated the metrics of Recall@1 and Re-
call@5 for each pair of binaries. In order to evaluate aDiff’s perfor-
mance on big binary pair (more function pairs), we split the testing
set into big subset and small subset. The big subset is consisted
of 647 binary pairs and each binary pair contains more than 300
function pairs. Table 2 shows the average recall and MRR results.

4.4.2 Evaluation on coreuTiLs. We further evaluated the accuracy
of aDiff on unseen binaries, e.g., coreutils that is commonly used
target in other BCSD solutions [6, 15, 49]. We collected 7 versions
of coreutils, including the latest version (i.e., v8.29 at the time of
writing), and got 604 pairs of cross-version binaries.

Table 4 shows the results of accuracy, when matching the old
version of coreutils to its latest version, compared with state-of-
the-art cross-version BCSD tool BinDiff.

First, BinDiff becomes less accurate when the version gap gets
larger. For example, the accuracy of matching v5.0 to v8.29 is only
0.486, less than half of the accuracy of matching v8.28 to v8.29. aDiff

ASE ’18, September 3-7, 2018, Montpellier, France

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou

Table 3: Accuracy of ¢Diff and BinDiff in cross-compiler-vendor & cross-version BCSD.

vulnerability alias binaries BinDiff aDiff

pre post vul-func found? | Recall@1 | vul-func found in top-1? | Recall@1 | MRR
CVE-2014-0160 Heartbleed openssl-1.0.1f | openssl-1.0.1g X 0.371 v 0.609 0.695
CVE-2014-6271 Shellshock bash-4.3 bash-4.3.30 X 0.485 v 0.559 0.577
CVE-2014-4877 wget-1.15 wget-1.16 X 0.555 vV 0.691 0.664
CVE-2014-7169 Shellshock?2 bash-4.3 bash-4.3.30 X 0.485 X 0.559 0.577
CVE-2014-9295 | Clobberin Time | ntpd-4.27p10 ntpd-4.28 X 0.434 vV 0.422 0.364
CVE-2015-3456 Venom qemu-2.30 qemu-2.40 X 0.276 X 0.301 0.261

Table 4: Comparison between aDiff and BinDiff on unseen
binaries from coreutils. Each version of binary is evaluated
against its latest version, i.e., v8.29 released on 2017-12-31.
The average accuracy is shown here. @1 means Recall@1
and @5 means Recall@5.

Ver# Date BinDiff | o “Déf;’” MR | @1 “D@‘f,:“ MRR
5.0 2003-04-02 0.486 0.649 0.756 0.708 0.738 0.821 0.782
63 | 20060930 | 0606 | 0677 | 0.844 | 0.756 | 0.778 | 0.892 | 0.836
7.1 2009-02-21 0.618 0.743 0.870 0.809 0.804 0.896 0.853
8.10 2011-02-04 0.776 0.827 0.906 0.868 0.864 0.926 0.896
826 | 2016-11-30 | 0992 | 0958 | 0987 | 0.972 | 0977 | 0.999 | 0.987
828 | 20170901 | 0999 | 0995 | 0.999 | 0.997 | 0.99 | 0.999 | 0.997

Recall@l

| —— aDiff-1f
aDIff-3f
—— BinDff

Figure 4: Comparison of the exact matching accuracy (i.e.,
Recall@1) between aDiff and Bindiff, when comparing each
binary in coreutils of version v5.0 to version v8.29.

has a much better performance in detect similarities between ver-
sions spanning a long time period. For example, as shown in Figure
4, aDiff outperforms BinDiff by more than 52% when comparing
some binaries from v5.0 to v8.29.

Second, aDiff-1f is also better than BinDiff when the version
gap is large. For example, it outperforms BinDiff by over 16% on
average, as shown in Figure 4. It shows that the sole intra-function
feature, which is identified by the Siamese network, is a very strong
feature for cross-version BCSD.

Third, BinDiff performs slightly better than aDiff when the ver-
sion gap is small. For example, the Recall@1 of aDiff is 0.996, smaller
than the accuracy of BinDiff (i.e., 0.999), when comparing binaries
of version v8.28 to v8.29. However, the Recall@5 of aDiff is better
than BinDiff, even if the version gap is small. It shows that aDiff
could get better match in the top 5 candidates than BinDiff.

674

4.5 Performance in Cross-compiler BCSD

Cross-compiler BCSD has three sub-types: cross-compiler-vendor,
cross-compiler-version and cross-optimization-level. Several ap-
proaches have been proposed to solve one or two of them, however,
neither one can solve all of them well. Our solution aDiff employs
semantic features to solve BCSD, and brings a chance to solve
cross-compiler BCSD too.

4.5.1 Cross-compiler-vendor & Cross-compiler-version. Esh [12] is
one of the representative solutions for this problem. However, it
is too slow, taking about 3 minutes to compare a pair of functions.
But we have a bunch of pairs to analyze. So here we only compared
aDiff with the state-of-the-art industrial tool BinDiff, not Esh.

As shown in Table 3, we collected six projects with known vul-
nerabilities, which are also evaluated in [12]. To construct cross-
compiler-vendor and cross-compiler-version binary pairs, we first
selected both vulnerable version and patched version for each
project. Then we compiled the pre-patch version with gcc-4.6.3,
and compiled the post-patch version with clang-3.8. To evaluate the
accuracy of similarity detection, we then designed two experiments.

We first queried the vulnerable function(s) in the patched binary.
If the tool returns the matching vulnerable function or puts it in the
top-1 candidate, we mark a v/ otherwise X in the table. The results
showed that, aDiff succeeded in four out of six cases, whereas
Bindiff failed in all cases.

Then we computed the overall accuracy of function matching,
i.e,, Recall@1, between these two binaries. In all cases except CVE-
2014-9295, aDiff outperformed BinDiff by 10 percentage on average.

4.5.2 Cross-compiler-vendor & Cross-optimization-level. BinGo [6]
is specialized on cross-compiler and cross-architecture BCSD prob-
lems. Here, we compared aDiff with BinGo and BinDiff, using same
experiment configurations as BinGo.

More specifically, we compiled cOREUTILS for x86 32-bit and x86
64-bit architectures, using gcc (v4.8.2) and clang (v3.0) with various
optimization levels (00 to 03).

To make a head-to-head comparison with BinGo, we also use the
same metric as BinGo. More specifically, it evaluates the percentage
of functions in the first binary, whose matching function in the
second binary is ranked one (i.e., best match) by the tool. We can
infer that, this percentage is similar to Recall@1, except with a
different denominator in Equation 2.

We evaluated six settings and listed the results in Table 5. In the
x86 architecture, we can see that aDiff outperforms BinGo in all
cases by 20% on average, and outperforms BinDiff in all cases except
the two clang-02 vs. clang-03 settings. In the x64 architecture,

aDiff: Cross-Version Binary Code Similarity Detection with DNN

Table 5: Comparing percentage of matching functions
ranked #1 by different tools, i.e., aDiff, BinGo and BinDiff, in
cross-compiler-vendor & cross-optimization-level settings.
C is short for clang and G is short for gcc.

x86_64 x86
aDiff | BinGo| BinDiff| aDiff | BinGo| BinDiff

C-0O0 vs. G-O3 | 0.403 | 0.265 | 0.229 0.462 | 0.332 | 0.271
C-00 vs. C-03 | 0.461 0.305 | 0.285 0.492 | 0.372 | 0.315
C-02 vs. C-0O3 | 0.960 | 0.561 | 0.996 0.969 | 0.576 | 0.994
G-00vs. C-03 | 0.446 | 0.307 | 0.199 0.484 | 0.333 | 0.258
G-00vs. G-O3 | 0.428 | 0.257 | 0.192 0.441 | 0.302 | 0.255
G-02vs. G-03 | 0.577 | 0.470 | 0.780 0.765 0.480 | 0.757

— M .

*# 0.6 - . ~ 22 BinGo

° 7 7 [aDiff

~ 0.5 -

c

© o

0.4

1%]

c

2 0.3

-

c

:EJ 0.21

G 0.11

®

0.0
@ & ,\f\ & ’\g:“ @ & ,‘53‘\ & P ,\r@ P& PP
FFF TS FFF ST S S

Figure 5: Comparing aDiff with BinGo in cross-compiler-
vendor and cross-architecture settings. C32 is short for clang
x86-32bit and G64 for gcc x86-64bit.

we could also draw similar results. In general, aDiff outperforms
BinGo and BinDiff in this setting of BCSD problems.

4.6 Performance in Cross-architecture BCSD

Since BinGo is also specialized on cross-architecture BCSD, we
still made a comparison with it here, using a same experiment
configuration. More specifically, we matched all functions in coRre-
UTILS binaries compiled for one architecture (i.e., x86 32-bit, x86
64-bit and ARM) to namesakes in binaries compiled for another
architecture. We also used the percentage of matching functions
ranked one as metric.

The evaluation result is shown in Figure 5. For BinGo, we took
its best result (i.e., the one with selective inlining). The data in the
plot can be read in the same way as BinGo. For example, the bar
C32 — G64 means that, when querying functions compiled using
clang for x86 architecture, around 42% of their matching functions
compiled using gec for x64 architecture are ranked 1 by the tool
BinGo, while 46% are ranked 1 by aDiff. Overall, aDiff outperforms
BinGo in all settings except G64 — C32.

4.7 Application in Vulnerability Search

Many BCSD solutions are proposed to solve vulnerability search
problem. Here we also evaluated the performance of aDiff in vulner-
ability search, in the cross-architecture setting, as done by DiscovRE
[16], Multi-k-MH [38] and Genius [17].

675

ASE ’18, September 3-7, 2018, Montpellier, France

We first compiled the vulnerable OpenSSL library, which have
two virtually identical vulnerabilities TLS and DTLS, on platforms
ARM, MIPS and x86. Then we queried one vulnerable function in
one binary, and examined the ranks of the two matching functions
in another binary, reported by each tool. The results are listed in
Table 6.

It shows that, when searching one function (e.g., TLS), aDiff
could always rank the two matching functions at place 1 and 2. In
general, it outperforms other tools. For example, when querying
the x86 TLS function in the MIPS binary, DiscovRE ranks the DTLS
function at place 4, while aDiff ranks it at place 2.

It shows that, the semantic feature automatically extracted by
neural network (used in aDiff) is effective, even better than the
CFG and other attributes (used in DiscovRE) provided by human
experts.

It is worth noting that, Gemini [52] also uses a network to search
bugs in cross-architecture. However, it uses features (e.g., CFG and
node attributes) provided by human experts to pre-process input
binaries, which we believe would introduce bias. But we do not
have the benchmark they used to evaluate the effectiveness. So we
omit the comparison between aDiff and Gemini.

5 DISCUSSION

In our work, we use CNN to encode the raw bytes of a function
into an embedding. More specifically, we take a function as a 2D
grid of bytes through 2-dimensional convolutional network (2D-
CNN). 2D-CNN is usually used for image processing, because an
image presents strong spatial locality on its the two dimensions
(i.e. width and height). A function is different from this and more
similar to text, meaning 1D-CNN seems to be more appropriate. In
our evaluations, 1D-CNN performs not bad, however, 2D-CONV
with the specific configuration performs better.

We can’t explain the reason behind this and plan to explore
it based on the advances on neural network visualization-related
researches [35, 36] in the future work. Although we don’t think we
have found the best configuration for both 2D-CNN and 1D-CNN,
we show the feasibility of extracting similarity features from raw
bytes with 2D-CNN. Other researchers can also continue to find
better models and configurations with our dataset.

Although aDiff outperforms BinGo [6] in cross-architecture
evaluations, in fact, the inter-function feature and inter-module
feature play important roles in our evaluations. In the future, we
plan to transfer our approach to the cross-architecture settings, i.e.
training a model with cross-architecture dataset.

6 RELATED WORK

In this section, we briefly survey closely related work.

6.1 Binary Code Similarity Analysis

Staitic Analysis. BinDiff [55], DiscovRE [16] and Genius [17]
are based on CFG/CG graph-isomorphism (GI) theory [14, 18]. Dis-
covRE [16] identifies a set of lightweight numeric features and
builds a pre-filter based on the features to quickly identify a small
set of candidate functions. Genius [17] encodes the CFGs into high-
level numeric vectors to achieve realtime vulnerability search in a
large set of firmware images. These approaches depend on graph

ASE ’18, September 3-7, 2018, Montpellier, France

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou

Table 6: Accuracy of searching the two vulnerable functions of Heartbleed, namely ‘tls1_process_heartbeat’ (denoted as TLS)
and ‘dtls1_process_heartbeat’ (denoted as DTLS), in OpenSSL binaries compiled for ARM, MIPS and x86. When searching one
function, both two should appear in the top candidates, since they are virtually identical. When searching TLS (or DTLS), the
value in the cell means the ranks of the matching TLS;DTLS functions (or DTLS;TLS) reported by the tool.

Multi-MH [38] Multi-k-MH [38] DiscovRE [16] Genius [17] Centroid [7] aDiff

From — to TLS DTLS TLS DTLS TLS DTLS TLS DTLS TLS DTLS TLS DTLS
ARM — x86 1;2 1;2 1;2 1;2 1;2 1;2 * * * * 1;2 1;2
ARM — MIPS 1;2 1;2 1;2 1;2 1;2 1;2 * * * * 1;2 1;2
ARM — ReadyNAS [40] 1;2 1;2 1;2 1;2 1;2 1;2 * * * * 1;2 2;1
ARM — DD-WRT [13] 1;2 1;2 1;2 1;2 1;2 1;2 * * * * 1;2 1;2
MIPS —» ARM 2;3 34 1;2 1;2 1;2 1;2 * * * * 2;1 2;1
MIPS — x86 1;4 1;3 1;2 1;3 1;2 1;2 * * * * 2;1 2;1
MIPS — ReadyNAS 2;4 6;16 1;2 1;4 1;2 1;2 1;2 1;2 88;190 678;988 2;1 1;2
MIPS — DD-WRT 1;2 1;2 1;2 1;2 1;2 1;2 1;2 1;2 46;100 87,99 1;2 2;1
x86 — ARM 1;2 1;2 1;2 1;2 1;2 1;2 * * * * 2;1 2;1
x86 — MIPS 1;7 11;21 1;2 1;6 1;4 1;3 * * * * 1;2 1;2
x86 — ReadyNAS 1;2 1;2 1;2 1;2 1;2 1;2 1;2 1;2 145;238 333;127 2;1 2;1
x86 — DD-WRT 70,78 1;2 5;33 1;2 1;2 1;2 1;2 1;2 97,255 102;89 1;2 1;2

matching, which has no known polynomial time algorithm, and
ignore the semantics of concrete assembly-level instructions.

Inspired by DiscovRE and Genius, Gemini [52] assumes a func-
tion can be represented as an ACFG, a CFG with numeric attributes.
It converts each ACFG to an embedding through Siamese architec-
ture and Structure2vec [11] network, which is similar with ours.
However, Gemini relies on hand-tuned features, such as CFG struc-
tures and numeric features. aDiff extracts the intra-function feature
from the raw bytes of functions, without human interference.

BinHunt [19] and iBinHunt [34] extend GI with symbolic exe-
cution and taint analysis to find semantic differences. BinGo [6]
captures the complete function semantics by a selective inlining
technique and then utilizes length variant partial traces to model
binary functions in a program structure agnostic fashion. Esh [12]
statistically reasons similarity of functions based on smaller frag-
ments’ semantic similarities computed by a program verifier. These
approaches are computationally expensive. For example, Esh takes
3 minutes on average to compare a pair of functions.

Dynamic Analysis. Under the assumption that similar code
has similar runtime behaviors, BELX [15] executes each function
for several calling contexts and collects runtime behaviors of func-
tions under a controlled randomized environment. IMF-SIM [49]
introduces in-memory fuzzing to solve the coverage issue of dy-
namic approaches. These approaches rely on architecture-specific
tools to execute or emulate binaries, and are inconvenient to apply.

6.2 Deep Metric Learning

Bromley et al. [4] paves the way on deep metric learning and
trained Siamese networks for signature verification. Chopra et al.
[9] presents a method for training a similarity metric from data
and applied it to face verification. Sean et al. [3] learns fine-grained
visual similarity for product design with deep convolutional neural
network and siamese network. FaceNet [44] uses a deep convolu-
tional network and triplet embedding [51] to learn unified embed-
ding on faces for face verification and identification. In contrast to
contrastive embedding [22] and triplet embedding [51], Song et al.

676

[47] proposes a new deep feature embedding algorithm by taking
full advantage of the training batches.

6.3 Convolutional Neural Network

Convolutional networks are a specialized kind of neural net-
work for processing data that has a known and grid-like topology
[20, 31]. CNNs typically consist of multiple interleaved layers of
convolutions, non-linear activations, local response normalizations,
pooling layers and one or more full-connected layers. Since the
notable success of AlexNet [30] in ILSVRC2012 [42], there has been
an explosion of interest in CNNs and many successful variants,
such as VGGNet [46], Inception-v3 [48] and ResNet [23], have been
presented. A full review of CNNs is beyond the scope of this paper
and more information can be found in [20, 21, 54].

7 CONCLUSION

In this paper, we propose a DNN augmented solution aDiff to
solve the cross-version BCSD problem. It employs three semantic
features, i.e., intra-function, inter-function and inter-module fea-
tures, which are exacted from binary code with lightweight solution.
We have implemented a prototype of aDiff, and evaluated it on a
dataset with about 2.5 million samples. The result shows that aDiff
outperforms state-of-the-art static solutions by over 10 percent-
ages on average, in detecting similarities between cross-version,
cross-compiler and cross-architecture binaries.

ACKNOWLEDGMENTS

We would thank Xiaoyu He, Jiaqi Peng and Shuai Wang for their
help in dataset preparing and paper comments. The work is sup-
ported by the Key Laboratory of Network Assessment Technology,
Chinese Academy of Sciences and Beijing Key Laboratory of Net-
work Security and Protection Technology, as well as National Key
R&D Program of China under Grant No.: 2016QY071405, NSFC un-
der Grant No.: 61572481, 61602470, 61772308, 61472209, 61502536,
and U1736209. and Young Elite Scientists Sponsorship Program by
CAST (Grant No. 2016QNRC001).

aDiff: Cross-Version Binary Code Similarity Detection with DNN

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

[12

(13

(14

[15

[16

[17

[18

= =

= O

—

—

—

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale
Machine Learning.. In OSDI Vol. 16. 265-283.

Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christo-
pher Kruegel, and Engin Kirda. 2009. Scalable, Behavior-Based Mal-
ware Clustering.. In NDSS, Vol. 9. Citeseer, 8—11.

Sean Bell and Kavita Bala. 2015. Learning visual similarity for product
design with convolutional neural networks. ACM Transactions on
Graphics (TOG) 34, 4 (2015), 98.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sackinger, and
Roopak Shah. 1994. Signature verification using a" siamese" time delay
neural network. In Advances in Neural Information Processing Systems.
737-744.

David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng.
2008. Automatic patch-based exploit generation is possible: Techniques
and implications. In Security and Privacy, 2008. SP 2008. IEEE Symposium
on. IEEE, 143-157.

Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu,
Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo: Cross-
architecture cross-os binary search. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 678-689.

Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang,
Heqing Huang, Wei Zou, and Peng Liu. 2015. Finding Unknown Malice
in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale..
In USENIX Security Symposium, Vol. 15.

Francois Chollet et al. 2015. Keras. Retrieved April 10, 2018 from
https://keras.io/

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a sim-
ilarity metric discriminatively, with application to face verification.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, Vol. 1. IEEE, 539-546.

George E Dahl, Tara N Sainath, and Geoffrey E Hinton. 2013. Improv-
ing deep neural networks for LVCSR using rectified linear units and
dropout. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, 8609-8613.

Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of
latent variable models for structured data. In International Conference
on Machine Learning. 2702-2711.

Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical simi-
larity of binaries. ACM SIGPLAN Notices 51, 6 (2016), 266—280.
DDWRT 2013. DD-WRT Firmware Image r21676. Retrieved April 26,
2018 from ftp://ftp.dd-wrt.com/betas/2013/05-27-2013-r21676/senao-
eoc5610/linux.bin

Thomas Dullien and Rolf Rolles. 2005. Graph-based comparison of
executable objects (english version). Sstic (2005), 1-13.

Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley.
2014. Blanket execution: Dynamic similarity testing for program
binaries and components. USENIX.

Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
2016. discovRE: Efficient Cross-Architecture Identification of Bugs in
Binary Code.. In NDSS.

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. 2016. Scalable graph-based bug search for firmware
images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 480-491.

Halvar Flake. 2004. Structural comparison of executable objects. In
Proc. of the International GI Workshop on Detection of Intrusions and
Malware & Vulnerability Assessment, number P-46 in Lecture Notes in
Informatics. Citeseer, 161-174.

677

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

ASE ’18, September 3-7, 2018, Montpellier, France

Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automat-
ically finding semantic differences in binary programs. In International
Conference on Information and Communications Security. Springer, 238—
255.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
2016. Deep learning. Vol. 1. MIT press Cambridge.

Isma Hadji and Richard P Wildes. 2018. What Do We Understand About
Convolutional Networks? arXiv preprint arXiv:1803.08834 (2018).
Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality
reduction by learning an invariant mapping. In Computer vision and
pattern recognition, 2006 IEEE computer society conference on, Vol. 2.
IEEE, 1735-1742.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770-778.
Hex-Rays. 2015. IDA Pro Disassembler and Debugger. Retrieved April
10, 2018 from https://www.hex-rays.com/products/ida/index.shtml
Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural
Networks for Machine Learning-Lecture 6a-Overview of mini-batch
gradient descent.

Xin Hu, Tzi-cker Chiueh, and Kang G Shin. 2009. Large-scale malware
indexing using function-call graphs. In Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 611-620.
Sergey loffe and Christian Szegedy. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167 (2015).

Jiyong Jang, Maverick Woo, and David Brumley. 2013. Towards Au-
tomatic Software Lineage Inference.. In USENIX Security Symposium.
81-96.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product
quantization for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence 33, 1 (2011), 117-128.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097-1105.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. 1989.
Backpropagation applied to handwritten zip code recognition. Neural
computation 1, 4 (1989), 541-551.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
2014. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software plagiarism detection. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 389-400.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
2017. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software and algorithm plagiarism
detection. IEEE Transactions on Software Engineering 43, 12 (2017),
1157-1177.

Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary hunt-
ing with inter-procedural control flow. In International Conference on
Information Security and Cryptology. Springer, 92-109.

Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and
Jeff Clune. 2016. Plug & play generative networks: Conditional iterative
generation of images in latent space. arXiv preprint arXiv:1612.00005
(2016).

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig
Schubert, Katherine Ye, and Alexander Mordvintsev. 2018. The Build-
ing Blocks of Interpretability. Distill 3, 3 (2018), e10.

Ombkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep
face recognition.. In BMVC, Vol. 1. 6.

https://keras.io/
ftp://ftp.dd-wrt.com/betas/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
ftp://ftp.dd-wrt.com/betas/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
https://www.hex-rays.com/products/ida/index.shtml

ASE ’18, September 3-7, 2018, Montpellier, France

(38]

(39

—

[40

=

(41

—

[42

—

[43

—_

[44

=

(45

[’

[46]

Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow,
and Thorsten Holz. 2015. Cross-architecture bug search in binary
executables. In Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 709-724.

Dragomir R Radev, Hong Qi, Harris Wu, and Weiguo Fan. 2002. Evalu-
ating web-based question answering systems. Ann Arbor 1001 (2002),
48109.

ReadyNAS 2014. ReadyNAS Firmware Image v6.1.6. Retrieved
April 26, 2018 from http://www.downloads.netgear.com/files/GDC/
READYNAS-100/ReadyNASOS-6.1.6-arm.zip

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986.
Learning representations by back-propagating errors. nature 323, 6088
(1986), 533.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision 115, 3 (2015),
211-252.

Andreas Sebjernsen, Jeremiah Willcock, Thomas Panas, Daniel Quin-
lan, and Zhendong Su. 2009. Detecting code clones in binary exe-
cutables. In Proceedings of the eighteenth international symposium on
Software testing and analysis. ACM, 117-128.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015.
Facenet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 815-823.

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Rec-
ognizing Functions in Binaries with Neural Networks.. In USENLX
Security Symposium. 611-626.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

678

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, W. Zou

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. 2016.
Deep metric learning via lifted structured feature embedding. In Com-
puter Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on.
IEEE, 4004-4012.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2818-2826.

Shuai Wang and Dinghao Wu. 2017. In-memory fuzzing for binary code
similarity analysis. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 319-330.
Zheng Wang, Ken Pierce, and Scott McFarling. 2000. Bmat-a binary
matching tool for stale profile propagation. The Journal of Instruction-
Level Parallelism 2 (2000), 1-20.

Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. 2006. Distance
metric learning for large margin nearest neighbor classification. In
Advances in neural information processing systems. 1473-1480.
Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
2017. Neural Network-based Graph Embedding for Cross-Platform
Binary Code Similarity Detection. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
363-376.

Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and
Fu Song. 2017. SPAIN: security patch analysis for binaries towards
understanding the pain and pills. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 462-472.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding
convolutional networks. In European conference on computer vision.
Springer, 818-833.

zynamics. [n. d.]. BinDiff. Retrieved April 09, 2018 from https:
/[www.zynamics.com/bindiff.html

http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip
http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Notation and Assumption
	2.2 Cross-version BCSD Problem
	2.3 Variant BCSD Problems
	2.4 Evaluation Metric

	3 Approach
	3.1 Overview
	3.2 Intra-function Semantic Feature
	3.3 Inter-function Semantic Feature
	3.4 Inter-module Semantic Feature
	3.5 Overall Similarity Computation

	4 Evaluation
	4.1 Implementation
	4.2 Evaluation Setup
	4.3 Hyper-parameters in the Siamese Network
	4.4 Accuracy in Cross-version BCSD
	4.5 Performance in Cross-compiler BCSD
	4.6 Performance in Cross-architecture BCSD
	4.7 Application in Vulnerability Search

	5 Discussion
	6 Related Work
	6.1 Binary Code Similarity Analysis
	6.2 Deep Metric Learning
	6.3 Convolutional Neural Network

	7 Conclusion
	Acknowledgments
	References

